Produksi Biomassa, Analisis Nutrisi dan Senyawa Bioaktif Jamur Grigit (Schizophyllum commune)


  • Rida Oktorida Khastini Program Studi Pendidikan Biologi, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Sultan Ageng Tirtayasa, Serang-Banten, Indonesia
  • Rani Rahmawati Program Studi Pendidikan Biologi, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Sultan Ageng Tirtayasa, Serang-Banten, Indonesia



mycelial biomass, nutrient, bioactive compound, Schizophyllum commune


Schizophyllum commune, a wild edible mushroom, has gained significant attention due to its potential as a valuable source of biomass, nutrients, and bioactive compounds. This study aims to explore the production of mycelial biomass and analyze its nutrient and bioactive compound content to be applied as a raw material in food production. The Schizophyllum commune was cultivated in potato dextrose broth media with temperature (25, 30, 35, and 40oC) and pH treatments (3, 7, and 8) to determine the optimal conditions for biomass production. Mycelia biomass was harvested and extracted. Nutrient and bioactive compounds were analyzed. Results showed that 30oC and pH 7 give the highest biomass production. Proximate analysis revealed that the mushroom's mycelia biomass contained high protein, low fat, and fiber. The analysis also demonstrated a rich profile of bioactive compounds, including flavonoid and phenolic compounds, respectively1 2,32 ± 0,95 dan 415,72 ± 15,23 g/100 g mycelia dry weight. Schizophyllum commune exhibits promising prospects for mycelial biomass production.


Download data is not yet available.


Asociation of Official Analytical Chemists of Official Analytical Chemists. 1990 Official Method of Analysis, (fifteenth ed.), Washington DC, USA

Ayimbila, F., & Keawsompong, S. 2023. Nutritional Quality and Biological Application of Mushroom Protein as a Novel Protein Alternative. Current nutrition reports, 12(2), 290–307.

Bains, A., Chawla, P., Kaur, S., Najda, A., Fogarasi, M., & Fogarasi, S. 2021. Bioactives from Mushroom: Health Attributes and Food Industry Applications. Materials (Basel, Switzerland), 14(24), 7640.

Bakratsas, G., Polydera, A., Nilson, O., Chatzikonstantinou, A. V., Xiros, C., Katapodis, P., & Stamatis, H. 2023. Mycoprotein Production by Submerged Fermentation of the Edible Mushroom Pleurotus ostreatus in a Batch Stirred Tank Bioreactor Using Agro-Industrial Hydrolysate. Foods, 12(12), 2295. MDPI AG. Retrieved from

Benson, K. F., Stamets, P., Davis, R., Nally, R., Taylor, A., Slater, S., & Jensen, G. S. 2019. The mycelium of the Trametes versicolor (Turkey tail) mushroom and its fermented substrate each show potent and complementary immune activating properties in vitro. BMC complementary and alternative medicine, 19(1), 342.

Bhambri, A., Srivastava, M., Mahale, V. G., Mahale, S., & Karn, S. K. 2022. Mushrooms as Potential Sources of Active Metabolites and Medicines. Frontiers in microbiology, 13, 837266.

Bozin, B., Mimica-Dukic, N., Samojlik, I., Goran, A., Igic, R. 2008. Phenolics as antioxidants in garlic (Allium sativum L., Alliaceae). Food Chem. 111: 925–929.

Deng, Y., Huang, Q., Hu, L., Liu, T., Zheng, B., Lu, D., Guo, C., & Zhou, L. 2021. Enhanced exopolysaccharide yield and antioxidant activities of Schizophyllum commune fermented products by the addition of Radix Puerariae. RSC advances, 11(60), 38219–38234.

Desai, J. 2018. Candida albicans Hyphae: From Growth Initiation to Invasion. Journal of Fungi, 4(1), 10. MDPI AG. Retrieved from

Finnigan, T. J. A., Wall, B. T., Wilde, P. J., Stephens, F. B., Taylor, S. L., & Freedman, M. R. 2019. Mycoprotein: The Future of Nutritious Nonmeat Protein, a Symposium Review. Current developments in nutrition, 3(6), nzz021.

Gamarra-Castillo, O., Echeverry-Montaña, N., Marbello-Santrich, A., Hernández-Carrión, M., & Restrepo, S. 2022. Meat Substitute Development from Fungal Protein (Aspergillus oryzae). Foods (Basel, Switzerland), 11(19), 2940.

Gwon, J. H., Park, H., & Eom, A. H. 2022. Effect of Temperature, pH, and Media on the Mycelial Growth of Tuber koreanum. Mycobiology, 50(4), 238–243.

Hu, Y., Xue, F., Chen, Y., Qi, Y., Zhu, W., Wang, F., Wen, Q., Shen J. 2023. Effects and Mechanism of the Mycelial Culture Temperature on the Growth and Development of Pleurotus ostreatus (Jacq.) P. Kumm. Horticulturae, 9(1), 95. MDPI AG. Retrieved from

Kalac P. (2009). Chemical composition and nutritional value of European species of wild growing mushroom: a review Food Chem., 113, pp. 9-16

Lattimer, J.M. & Haub, M.D. 2010. Effects of dietary fiber and its components on metabolic health. Nutrients, 2010(2), 1266-1289

Li J, Zhang J, Chen H, Chen X, Lan J, Liu C. Complete mitochondrial genome of the medicinal mushroom Ganoderma lucidum. PLoS One. 2013;8(8):e72038. doi: 10.1371/journal.pone.0072038.

Matsumura, Y., Kitabatake, M., Kayano, S., & Ito, T. 2023. Dietary Phenolic Compounds: Their Health Benefits and Association with the Gut Microbiota. Antioxidants, 12(4), 880. MDPI AG. Retrieved from

Noverita, Armanda, D., P., Matondang, I., Setia, T., M., & Wati, R. 2019. Keanekaragaman dan Potensi Jamur Makro di Kawasan SuakaMargasatwa Bukit Rimbang Bukit Baling (SMBRBB) Propinsi Riau, Sumatera. Jurnal Pro-Life, 6(1), 26-43

Preecha C., Thongliumnak S. Bag opening technique for bag spawn culture of spit gill mushroom (Schizophyllum commune) Int. J. Agric. Technol. 2015;11(2):367–372.

Procházka, P., Soukupová, J., Mullen, K. J., Tomšík, K., Jr, & Čábelková, I. (2023). Wild Mushrooms as a Source of Protein: A Case Study from Central Europe, Especially the Czech Republic. Foods (Basel, Switzerland), 12(5), 934.

Rahmawati, Linda, R., & Tanti, N., Y. 2018. Jenis-Jenis Jamur Makroskopis Anggota Kelas Basidiomycetes di Hutan Bayur, Kabupaten Landak, Kalimantan Barat. Jurnal Mikologi Indonesia, 2(2), 56-66

Takemoto, S., Nakamura, H., Erwin, Imamura, Y., Shimane, T., 2010. Schizophyllum commune as a Ubiquitous plant parasite. JARQ 44(4), 357–364.

Valverde ME, Hernández-Pérez T, Paredes-López O. Edible mushrooms: improving human health and promoting quality life. Int J Microbiol. 2015;2015:376387. doi: 10.1155/2015/376387. Epub 2015 Jan 20. PMID: 25685150; PMCID: PMC4320875.

Wikandari, R., Tanugraha, D. R., Yastanto, A. J., Manikharda, Gmoser, R., & Teixeira, J. A. 2023. Development of Meat Substitutes from Filamentous Fungi Cultivated on Residual Water of Tempeh Factories. Molecules (Basel, Switzerland), 28(3), 997.

Yim H.S., Chye F.Y., Rao V., Low J.Y., Matanjun P., How S.E.C.W. Optimization of Extraction Time and Temperature on Antioxidant Activity of Schizophyllum commune Aqueous Extract Using Response Surface Methodology. J. Food Sci. Technol. 2013;50:275–283. doi: 10.1007/s13197-011-0349-5

Yusran, Y., Erniwati, E., Khumaidi, A., Pitopang, R., & Jati, I. R. A. P. 2023. Diversity of substrate type, ethnomycology, mineral composition, proximate, and phytochemical compounds of the Schizopyllum commune Fr. in the area along Palu-Koro Fault, Central Sulawesi, Indonesia. Saudi journal of biological sciences, 30(4), 103593.

Zhishen, J., Mengcheng, T., Jianming, W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555–559.




How to Cite

Khastini, R. O. and Rahmawati, R. . (2023) “Produksi Biomassa, Analisis Nutrisi dan Senyawa Bioaktif Jamur Grigit (Schizophyllum commune) ”, Biotropic : The Journal of Tropical Biology, 7(2), pp. 43–51. doi: 10.29080/biotropic.v7i2.1932.