The Ability of Secondary Metabolites from Actinomadura sp. as COVID-19 Protease Inhibitor: In Silico Method

Authors

  • Yuriza Eshananda Faculty of Biology, Universitas Jenderal Soedirman, Purwokerto, Central Java, Indonesia
  • Sri Martina Wiraswati Faculty of Biology, Universitas Jenderal Soedirman, Purwokerto, Central Java, Indonesia
  • Sri Lestari Faculty of Biology, Universitas Jenderal Soedirman, Purwokerto, Central Java, Indonesia
  • Afifah Mariana Faculty of Biology, Universitas Jenderal Soedirman, Purwokerto, Central Java, Indonesia
  • Tia Erfianti Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Hermin Pancasakti Kusumaningrum Biotechnology Study Program, Faculty of Natural Sciences and Mathematics, Universitas Diponegoro, Semarang, Central Java, Indonesia

DOI:

https://doi.org/10.29080/biotropic.v7i2.1926

Keywords:

Keywords: COVID-19 Protease, Actinomadura, Molecular Docking

Abstract

The pandemic of COVID-19 disease in the late of 2019 resulted in the massive screening for drug discovery purpose. However, there is still no reports about the ability of natural products from bacterial group of class Actinobacteria as COVID-19 inhibitor. The aim of this research is to identify the potential ability of natural compounds from Actinomadura sp., the member of class Actinobacteria, against two receptors of COVID-19 protease with PDB ID 6LU7 and 5R7Y. The eleven natural compounds were docked using AutoDock Vina and the interaction between receptor and ligands were analysed using LIGPLOT. The most potential compound was simulated for its interaction stability using Yet Another Scientific Artificial Reality Application (YASARA) dynamics. The result of molecular docking by AutoDock Vina showed that Sagamilactam become the most potential inhibitor for viral protease as it had lower binding affinity (6LU7:-12 and 5R7Y:-10.4) compared to the both of  native ligand (6LU7:-11.4 and 5R7Y:-4.6). Furthermore, the interaction of the most potential ligand showed the low number of Root Mean Square Deviation (RMSD) deviation in molecular dynamic simulations. This result validated the docking method that used and indicated that secondary metabolites produced from rare actinobacteria of Actinomadura sp. have promising possibility to inhibit COVID-19 protease.

Downloads

Download data is not yet available.

References

Aier, I., Varadwaj, P. K., & Raj, U. 2016. Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Scientific Reports, 6. https://doi.org/10.1038/srep34984

Al-Karmalawy, A. A., Dahab, M. A., Metwaly, A. M., Elhady, S. S., Elkaeed, E. B., Eissa, I. H., & Darwish, K. M. 2021. Molecular Docking and Dynamics Simulation Revealed the Potential Inhibitory Activity of ACEIs Against SARS-CoV-2 Targeting the hACE2 Receptor. Frontiers in Chemistry, 9. https://doi.org/10.3389/fchem.2021.661230

Amin, D. H., Abdallah, N. A., Abolmaaty, A., Tolba, S., & Wellington, E. M. H. 2020. Microbiological and molecular insights on rare Actinobacteria harboring bioactive prospective. Bulletin of the National Research Centre, 44(1). https://doi.org/10.1186/s42269-019-0266-8

Azman, A. S., Othman, I., Velu, S. S., Chan, K. G., & Lee, L. H. 2015. Mangrove rare actinobacteria: Taxonomy, natural compound, and discovery of bioactivity. In Frontiers in Microbiology (Vol. 6, Issue AUG). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2015.00856

Badji, B., Zitouni, A., Mathieu, F., Lebrihi, A., & Sabaou, N. 2006. Antimicrobial compounds produced by Actinomadura sp. AC104 isolated from an Algerian Saharan soil. Canadian Journal of Microbiology, 52(4), 373–382. https://doi.org/10.1139/W05-132

Case, D. A., Cheatham Iii, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. 2015. The Amber Biomolecular Simulation Programs. http://amber.scripps.edu.

Ding, T., Yang, L. J., Zhang, W. D., & Shen, Y. H. 2019. The secondary metabolites of rare actinomycetes: Chemistry and bioactivity. In RSC Advances (Vol. 9, Issue 38, pp. 21964–21988). Royal Society of Chemistry. https://doi.org/10.1039/c9ra03579f

Feikin, D. R., Higdon, M. M., Abu-Raddad, L. J., Andrews, N., Araos, R., Goldberg, Y., Groome, M. J., Huppert, A., O’Brien, K. L., Smith, P. G., Wilder-Smith, A., Zeger, S., Deloria Knoll, M., & Patel, M. K. 2022. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression. The Lancet, 399(10328), 924–944. https://doi.org/10.1016/S0140-6736(22)00152-0

Glaser, J., Sedova, A., Galanie, S., Kneller, D. W., Davidson, R. B., Maradzike, E., del Galdo, S., Labbé, A., Hsu, D. J., Agarwal, R., Bykov, D., Tharrington, A., Parks, J. M., Smith, D. M. A., Daidone, I., Coates, L., Kovalevsky, A., & Smith, J. C. 2022. Hit Expansion of a Noncovalent SARS-CoV-2 Main Protease Inhibitor. ACS Pharmacology and Translational Science, 5(4), 255–265. https://doi.org/10.1021/acsptsci.2c00026

Huff, S., Kummetha, I. R., Tiwari, S. K., Huante, M. B., Clark, A. E., Wang, S., Bray, W., Smith, D., Carlin, A. F., Endsley, M., & Rana, T. M. 2022. Discovery and Mechanism of SARS-CoV-2 Main Protease Inhibitors. Journal of Medicinal Chemistry, 65(4), 2866–2879. https://doi.org/10.1021/acs.jmedchem.1c00566

Ivanović, V., Rančić, M., Arsić, B., & Pavlović, A. 2020. Lipinski’s rule of five, famous extensions and famous exceptions. In POPULAR SCIENTIFIC ARTICLE (Vol. 3, Issue 1).

Kimura, T., Iwatsuki, M., Asami, Y., Ishiyama, A., Hokari, R., Otoguro, K., Matsumoto, A., Sato, N., Shiomi, K., Takahashi, Y., Omura, S., & Nakashima, T. 2016. Anti-trypanosomal compound, sagamilactam, a new polyene macrocyclic lactam from Actinomadura sp. K13-0306. Journal of Antibiotics, 69(11), 818–824. https://doi.org/10.1038/ja.2016.28

Kony, D. B., Hünenberger, P. H., & van Gunsteren, W. F. 2007. Molecular dynamics simulations of the native and partially folded states of ubiquitin: Influence of methanol cosolvent, pH, and temperature on the protein structure and dynamics. Protein Science, 16(6), 1101–1118. https://doi.org/10.1110/ps.062323407

Krieger, E., & Vriend, G. 2015. New ways to boost molecular dynamics simulations. Journal of Computational Chemistry, 36(13), 996–1007. https://doi.org/10.1002/jcc.23899

Kusumaningrum, H. P., Ferniah, R. S., Jannah, S. N., Kurniawati, M. B., Afifah, A., Sumbodo, Y. M., Hanif, S. S., Erfianti, T., & Eshananda, Y. 2022. Relationship Between Phylogenetic of Apium and Foeniculum Plants from Central Java, Indonesia, and Their Secondary Metabolites Potency against COVID-19 Protease. Open Access Macedonian Journal of Medical Sciences, 10(A), 1234–1241. https://doi.org/10.3889/oamjms.2022.9852

Lipinski, C. A. 2004. Lead- and drug-like compounds: The rule-of-five revolution. In Drug Discovery Today: Technologies (Vol. 1, Issue 4, pp. 337–341). https://doi.org/10.1016/j.ddtec.2004.11.007

Morris, G. M., Ruth, H., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. 2009. Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256

Puttaswamy, H., Gowtham, H. G., Ojha, M. D., Yadav, A., Choudhir, G., Raguraman, V., Kongkham, B., Selvaraju, K., Shareef, S., Gehlot, P., Ahamed, F., & Chauhan, L. 2020. In silico studies evidenced the role of structurally diverse plant secondary metabolites in reducing SARS-CoV-2 pathogenesis. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-77602-0

Ramadhan, D. S. F., Fakih, T. M., & Arfan, A. 2020. Activity Prediction of Bioactive Compounds Contained in Etlingera elatior Against the SARS-CoV-2 Main Protease: An In Silico Approach. Borneo Journal of Pharmacy, 3(4), 235–242. https://doi.org/10.33084/bjop.v3i4.1634

Singhal, T. 2020. A Review of Coronavirus Disease-2019 (COVID-19). In Indian Journal of Pediatrics (Vol. 87, Issue 4, pp. 281–286). Springer. https://doi.org/10.1007/s12098-020-03263-6

Tarantini, F. S., Brunati, M., Taravella, A., Carrano, L., Parenti, F., Hong, K. W., Williams, P., Chan, K. G., Heeb, S., & Chan, W. C. 2021. Actinomadura graeca sp. nov.: A novel producer of the macrocyclic antibiotic zelkovamycin. PLoS ONE, 16(11). https://doi.org/10.1371/journal.pone.0260413

Trott, O., & Olson, A. J. 2009. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, NA-NA. https://doi.org/10.1002/jcc.21334

Xue, Q., Liu, X., Russell, P., Li, J., Pan, W., Fu, J., & Zhang, A. 2022. Evaluation of the binding performance of flavonoids to estrogen receptor alpha by Autodock, Autodock Vina and Surflex-Dock. Ecotoxicology and Environmental Safety, 233. https://doi.org/10.1016/j.ecoenv.2022.113323

Zeiger, E. 2019. The test that changed the world: The Ames test and the regulation of chemicals. In Mutation Research - Genetic Toxicology and Environmental Mutagenesis (Vol. 841, pp. 43–48). Elsevier B.V. https://doi.org/10.1016/j.mrgentox.2019.05.007

Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. 2020. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science, 368(6489), 409–412. https://doi.org/10.1126/science.abb3405

Downloads

Published

2023-08-31

How to Cite

Eshananda, Y., Wiraswati, S. M., Lestari, S. ., Mariana, A., Erfianti, T. and Kusumaningrum, H. P. (2023) “The Ability of Secondary Metabolites from Actinomadura sp. as COVID-19 Protease Inhibitor: In Silico Method”, Biotropic : The Journal of Tropical Biology, 7(2), pp. 25–34. doi: 10.29080/biotropic.v7i2.1926.