Optimasi Suhu dan Waktu SSF untuk Produksi Bioetanol dari Sampah Daun Menggunakan Trichoderma Viride dan Zymomonas Mobilis

Authors

  • Wulan Fitriani Safari Program Studi Teknologi Laboratorium Medis, Fakultas Ilmu Kesehatan dan Teknologi, Universitas Binawan, Jakarta, Indonesia

Keywords:

Bioethanol, Foliage, SSF, Trichoderma viride, Zymomonas mobilis

Abstract

Foliage from gardens or parks is biomass whose organic fraction can be decomposed. Foliage can be utilized by converting it into bioethanol. Various studies have shown that Trichoderma viride and Zymomonas mobilis play a role in the production of bioethanol from biomass, but until now there has been no report on the production of bioethanol from foliage using a mixture of  T. viride and Z. mobilis. The purpose of this study was to determine the optimal SSF temperature and time for bioethanol production from foliage using T. viride and Z. mobilis. The fermentation process used the Simultaneous Saccharification and Fermentation (SSF) method with a mixture of T. viride and Z. mobilis with a composition of 5% : 5% (w/v). SSF was carried out at several variations of time and temperature, 60 hours, 72 hours, 80 hours and 96 hours for times and temperatures used are 32oC, 35oC and 38oC. The fermented bioethanol was purified by distillation and finally, the ethanol content was tested with GC. Bioethanol was successfully produced from foliage using T. viride and Z. mobilis with the highest ethanol content obtained in SSF with a temperature of 35oC and a time of 72 hours, which is 0.2151%.

Downloads

Download data is not yet available.

References

Agustina, D., Surtiningsih, T., Manuhara, Y. S. W., Arifiyanto, A., & Malewa, M. (2019). Study of Cellulase Activity Produced by Penicillium sp., Aspergillus niger and Trichoderma viride on Imperata cylindrica (L.) Beauv. Enrichment Media. IOP Conference Series: Earth and Environmental Science, 253(1). https://doi.org/10.1088/1755-1315/253/1/012016

Anggarini, S., Hindun Pulungan, M., Wignyanto, W., Hidayat, N., Nurika, I., & Ihwah, A. (2016). Effect of Temperature Stress and Metal Ion Supplement on Ethanol Fermentation by Zymomonas mobilis. Industria: Jurnal Teknologi Dan Manajemen Agroindustri, 5(3), 125–131. https://doi.org/10.21776/ub.industria.2016.005.03.2

Asif, H. K., Ehsan, A., Kashaf, Z., Abeera, A. A., Azra, N., & Muneeb, Q. (2015). Comparative study of bioethanol production from sugarcane molasses by using Zymomonas mobilis and Saccharomyces cerevisiae. African Journal of Biotechnology, 14(31), 2455–2462. https://doi.org/10.5897/ajb2015.14569

B, B. (2018). Isolation, Production and Optimization of Cellulase from a Combination of Aspergillus Niger and Trichoderma Viride Isolated from Decaying Woods. International Journal of Biochemistry & Physiology, 3(4). https://doi.org/10.23880/ijbp-16000139

Behera, S., Mohanty, R. C., & Ray, R. C. (2012). Ethanol fermentation of sugarcane molasses by Zymomonas mobilis MTCC 92 immobilized in Luffa cylindrica L. sponge discs and ca-alginate matrices. Brazilian Journal of Microbiology, 43(4), 1499–1507. https://doi.org/10.1590/S1517-83822012000400034

Bhardwaj, N., Kumar, B., & Verma, P. (2019). A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresources and Bioprocessing, 6(1). https://doi.org/10.1186/s40643-019-0276-2

Chandra, I., Abha, S., Bandyopadhyay, K. K., Shruti, S., Priya, P., Prachi, J., & Shubha, D. (2013). Bioethanol production by Zymomonas mobilis MTCC No. 2427 using orange peels as low cost substrates. International Journal of ChemTech Research, 5(6), 2787–2792.

Choudhary, A., Tiwari, S., Jadhav, S. K., & Tiwari, K. L. (2016). Bioethanol Production from Shorea robusta ( Sal ) Seeds using Zymomonas mobilis MTCC92. 10(3), 9–14. https://doi.org/10.14456/sustj.2016.7

Costa, A. C. da, Cavalheiro, G. F., Vieira, E. R. de Q., Gandra, J. R., de Goes, R. H. de T. e. B., Paz, M. F. da, Fonseca, G. G., & Leite, R. S. R. (2019). Catalytic properties of xylanases produced by Trichoderma piluliferum and Trichoderma viride and their application as additives in bovine feeding. Biocatalysis and Agricultural Biotechnology, 19(June), 101161. https://doi.org/10.1016/j.bcab.2019.101161

Fortkamp, D., & Knob, A. (2014). High xylanase production by Trichoderma viride using pineapple peel as substrate and its apllication in pulp biobleaching. African Journal of Biotechnology, 13(22), 2248–2259. https://doi.org/10.5897/ajb2013.13479

Gunam, I. B. W., Antara, N. S., Anggreni, A. A. M. D., Setiyo, Y., Wiguna, I. P. E., Wijaya, I. M. M., & Putra, I. W. W. P. (2019). Chemical pretreatment of lignocellulosic wastes for cellulase production by Aspergillus niger FNU 6018. AIP Conference Proceedings, 2155(September). https://doi.org/10.1063/1.5125544

HUNG, H. C., ADENI, D. S. A., JOHNNY, Q., & VINCENT, M. (2018). Production of bioethanol from sago hampas via Simultaneous Saccharification and Fermentation (SSF). Nusantara Bioscience, 10(4), 240–245. https://doi.org/10.13057/nusbiosci/n100407

Khalib, S. N. B., Zakarya, I. A., & Izhar, T. N. T. (2018). Composting of garden waste using indigenous microorganisms (IMO) as organic additive. International Journal of Integrated Engineering, 10(9), 53–59. https://doi.org/10.30880/ijie.2018.10.09.026

Kusmiyati, Hadiyanto, H., & Kusumadewi, I. (2016). Bioethanol production from iles-iles (Amorphopallus campanulatus) flour by fermentation using zymomonas mobilis. International Journal of Renewable Energy Development, 5(1), 9–14. https://doi.org/10.14710/ijred.5.1.9-14

Maroufpour, B., Rad, F. A., & Yazdanseta, S. (2019). Bioethanol production as biofuel from potato peel using saccharomyces cerevisiae PTCC 5052 AND Zymomonas mobilis PTCC 1718. Bioagro, 31(3), 177–184.

Mishra, P. K., & Khan, F. N. (2015). Effect of Different Growth Media and Physical Factors on Biomass Production of Trichoderma Viride. 8(2), 11–17.

Mizar, M. A., Amin, M., Hadi, M. S., Aziz, M., & Sulfahri. (2020). Bioethanol production from sugarcane bagasse pretreated by trichoderma viride. Journal of Applied Engineering Science, 18(2), 262–266. https://doi.org/10.5937/jaes18-25651

Mukesh Srivastava, S. P. (2015). Trichoderma species Cellulases Produced by Solid State Fermentation. Journal of Data Mining in Genomics & Proteomics, 06(02), 2–5. https://doi.org/10.4172/2153-0602.1000170

Nathan, V. K., Rani, M. E., Rathinasamy, G., Dhiraviam, K. N., & Jayavel, S. (2014). Process optimization and production kinetics for cellulase production by Trichoderma viride VKF3. SpringerPlus, 3(1), 1–12. https://doi.org/10.1186/2193-1801-3-92

Ndapamuri, M. H., Herawati, M. M., & Meitiniarti, V. I. (2021). Production of Sugar From Sweet Sorghum Stems with Hydrolysis Method Using Trichoderma viride. Biosaintifika: Journal of Biology & Biology Education, 13(1), 121–127. https://doi.org/10.15294/biosaintifika.v13i1.25954

Ona, I. J., Agogo, H. O., & Iorungwa, M. S. (2019). Production of Bioethanol from Cassava using Zymomonas mobilis: Effect of Temperature and Substrate concentration. Nigerian Annals of Pure and Applied Sciences, 1, 153–160. https://doi.org/10.46912/napas.40

Paper, A. (2022). Simultaneous Saccharification and Fermentation of Empty Fruit Bunches of Palm for Bioethanol Production using microbial consortium of S . cerevisiae and T . harzianum. 1–21.

Permatasari, N. S., Zainuri, M., Kusumaningrum, H. P., Mishbach, I., & Hastuti, E. D. (2020). Bioethanol production using the SSF method (simultaneous saccharification and fermentation) of microalgae anabaena sp. Journal of Physics: Conference Series, 1524(1). https://doi.org/10.1088/1742-6596/1524/1/012071

Prasoulas, G., Gentikis, A., Konti, A., Kalantzi, S., Kekos, D., & Mamma, D. (2020). Bioethanol production from food waste applying the multienzyme plasma at laboratory and bench-scale levels and its application as a starter culture in a meat product. Fermentation, 6(2). https://doi.org/10.3390/FERMENTATION6020039

Puspita, P., Hsieh, C.-W., & Chang, Y.-S. (2019). Production of Ethanol by Zymomonas Mobilis Mutant : The Effects of Sodium Acetate at pH 5 and No Control pH. International Journal of Chemical Engineering and Applications, 10(3), 80–86. https://doi.org/10.18178/ijcea.2019.10.3.745

Sh. El-Gendy, N., R. Madian, H., N. Nassar, H., & S. Abu Amr, S. (2015). Response Surface Optimization of the Thermal Acid Pretreatment of Sugar Beet Pulp for Bioethanol Production Using Trichoderma viride and Saccharomyces cerevisiae. Recent Patents on Biotechnology, 9(1), 50–62. https://doi.org/10.2174/1872208309666150916092450

Sharma, S., Jha, P. K., & Panwar, A. (2021). Production of bioethanol from wheat straw via optimization of co-culture conditions of Bacillus licheniformis and Saccharomyces cerevisiae. Discover Energy, 1(1), 1–13. https://doi.org/10.1007/s43937-021-00004-4

Sivasakthivelan, P., Saranraj, P., & Sivasakthi, S. (2014). Production of Ethanol by Zymomonas mobilis and Saccharomyces cerevisiae Using Sunflower Head Wastes -A Comparative Study. International Journal of Microbiological Research, 5(3), 208–216. https://doi.org/10.5829/idosi.aejsr.2015.10.5.8476

Skepticism, O., & Technology, S. (2017). 科学技術 ( Science and Technology ) と科学 ・ 技術 ( Science and Technology ) について 戸田工業株式会社 創造本部 京 藤 倫 久. October, 53(7), 401–405.

State, I., Polytechnic, I. S., & State, I. (2018). Comparative study of bioethanol production from agricultural wastes by Zymomonas mobilis and Saccharomyces cerevisiae. 6, 50–60.

Sulfahri, Amin, M., Sumitro, S. B., & Saptasari, M. (2016). Bioethanol production from algae Spirogyra hyalina using Zymomonas mobilis. Biofuels, 7(6), 621–626. https://doi.org/10.1080/17597269.2016.1168028

Syadiah, E. A., Haditjaroko, L., & Syamsu, K. (2018). Bioprocess engineering of bioethanol production based on sweet sorghum bagasse by co-culture technique using Trichodermareesei and Saccharomyces cerevisiae. IOP Conference Series: Earth and Environmental Science, 209(1). https://doi.org/10.1088/1755-1315/209/1/012018

Syawala, D. (2013). Production Of Bioethanol From Corncob And Sugarcane Bagasse With Hydrolysis Process Using Aspergillus niger and Trichoderma viride. IOSR Journal Of Environmental Science, Toxicology And Food Technology, 5(4), 49–56. https://doi.org/10.9790/2402-0544956

Wahono, S. K., Rosyida, V. T., Darsih, C., Pratiwi, D., Frediansyah, A., & Hernawan. (2015). Optimization of Simultaneous Saccharification and Fermentation Incubation Time Using Cellulose Enzyme for Sugarcane Bagasse on the Second-generation Bioethanol Production Technology. Energy Procedia, 65, 331–336. https://doi.org/10.1016/j.egypro.2015.01.061

Wang, Y., Bian, X., & Zhou, L. (2012). Simultaneous saccharification and fermentation (SSF) of cellulose from lignocelllulise for 2 nd bioethanol production: A review. Advanced Materials Research, 512–515(May 2012), 464–467. https://doi.org/10.4028/www.scientific.net/AMR.512-515.464

Wistara, N. J., Sitanggang, V. J., & Hermiati, E. (2013). Ethanol Production Using SSF Method from Paper-Based Material Exposed to Various Physical Treatments. Teknologi Industri Pertanian, 23(3), 184–189.

Yesmin, M. N., Azad, M. A. K., Kamruzzaman, M., & Uddin, M. N. (2020). Bioethanol Production from Corn, Pumpkin and Carrot of Bangladesh as Renewable Source using Yeast Saccharomyces cerevisiae . Acta Chemica Malaysia, 4(2), 45–54. https://doi.org/10.2478/acmy-2020-0008

Zhang, Q., Weng, C., Huang, H., Achal, V., & Wang, D. (2016). Optimization of bioethanol production using whole plant of water hyacinth as substrate in simultaneous saccharification and fermentation process. Frontiers in Microbiology, 6(JAN), 1–9. https://doi.org/10.3389/fmicb.2015.01411

Downloads

Published

2022-08-31

How to Cite

Wulan Fitriani Safari (2022) “Optimasi Suhu dan Waktu SSF untuk Produksi Bioetanol dari Sampah Daun Menggunakan Trichoderma Viride dan Zymomonas Mobilis”, Biotropic : The Journal of Tropical Biology, 6(2), pp. 1–12. Available at: http://jurnalsaintek.uinsby.ac.id/index.php/biotropic/article/view/1484 (Accessed: 1 October 2022).