A Functional Form of The Zenga Curve Based on Rohde’s Version of the Lorenz Curve


  • Muhammad Fajar Institutu Teknologi Sepuluh Nopember, Badan Pusat Statistik
  • Setiawan Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Nur Iriawan Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Eko Fajariyanto Badan Pusat Statistik




Lorenz Curve, Zenga curve, Rohde


The Zenga curve is a tool to measure income inequality that represents the income ratio between the bottom income group and the top income group. A proper Zenga curve is a Zenga curve that can detect variations in the Ratio. In this paper, we derive the functional form of the Zenga curve from Rohde's Lorenz curve model. The result of this paper is that the functional form of the Zenga curve from Rohde's version of the Lorenz curve model is a constant. It cannot represent the truly happening phenomenon of inequality.


Download data is not yet available.


M. O. Lorenz, “Methods of measuring the concentration of wealth,” Publications of the American Statistical Association, vol. 9, no. 70, pp. 209-219, 1905.

N. Rohde, “An alternative functional form for estimating the Lorenz curve,” Economics Letters 105, pp. 61-63, 2009.

N. Rohde, “Lorenz curve interpolation and the Gini coefficient,” Journal of Income Distribution, vol. 19, No. 2, pp. 111 – 123, 2010.

R. Rasche, J. Gaffney, A. Y. C. Koo, and N. Obst, “Functional forms for estimating the Lorenz curve,” Econometrica 48, pp. 1061–1062, 1980.

P. Ortega, G. Martin, A. Fernández, M. Ladoux, and A. García, “A new functional form for estimating Lorenz curves,” Review of Income and Wealth, series 37, number 4, 1991.

T. Ogwang and U.L.G. Rao. Chotikapanich, “A new functional form for approximating the Lorenz curve”, Economics Letters, vol. 52, no. 1, pp. 21 – 29, 1996.

S. Paul and S. Shankar, “An alternative single parameter functional form for Lorenz curve,” Empirical Economics, vol. 59, pp. 1393 – 1402, 2020.

J. L. Gastwirth and M. Glauberman, “The interpolation of the Lorenz curve and Gini index from grouped data,” Econometrica, vol. 44, no. 3, pp. 479-483, 1976.

D. Chotikapanich, “A comparison of alternative functional forms for the Lorenz curve,” Economics Letters, vol. 41, pp. 129-138, 1993.

M.R. Gupta, “Functional form for estimating the Lorenz Curve”, Econometrica, vol. 52, issue. 5, pp. 1313-1314

N. C. Kakwani and N. Podder, “On the estimation of Lorenz curves from grouped observations,” International Economic Review, vol. 14, no. 2, pp. 278-292, 1973.

M. Langel and Y. Tillé, “Inference by linearization for Zenga’s new inequality index: a comparison with the Gini index, “Metrika International Journal for Theoretical and Applied Statistics 75, no. 8, pp. 1093–1110, 2012.

M. Zenga, “Inequality curve and inequality index based on the ratios between lower and upper arithmetic means,” Statistica e Applicazioni 4:3–27, 2007.

W. Maffenini and M. Polisicchio, “How potential is the I(p) inequality curve in the analysis of empirical distributions, Technical report,” Universita Degli Studi di Milano-Bicocca, 2010.

E. Castillo, A. S. Hadi, and J. M. Sarabia, ”A method for estimating Lorenz curves,” Communications in Statistics, Theory and Methods, vol. 27, pp. 2037-2063, 1998.

M. Fajar, “Pemodelan Kurva Lorenz versi Rohde pada Pengeluaran Rumah Tangga Pertanian di Provinsi Papua,” Euclid, vol. 8, no.1, pp. 1-5, 2021.




How to Cite

Fajar, M., Setiawan, Iriawan, N., & Fajariyanto, E. . (2022). A Functional Form of The Zenga Curve Based on Rohde’s Version of the Lorenz Curve. Jurnal Matematika MANTIK, 8(1), 63–67. https://doi.org/10.15642/mantik.2022.8.1.63-67