The Implementation of Rough Set on A Group Structure


  • Ananto Adi Nugraha Universitas Lampung
  • Fitriani Universitas Lampung
  • Muslim Ansori Universitas Lampung
  • Ahmad Faisol Universitas Lampung



lower approximation, upper approximation, rough set, rough group, centralizer


Let  be a non-empty set and  an equivalence relation on . Then,  is called an approximation space. The equivalence relation on  forms disjoint equivalence classes. If , then we can form a lower approximation and an upper approximation of . If X⊆U, then we can form a lower approximation and an upper approximation of X. In this research, rough group and rough subgroups are constructed in the approximation space  for commutative and non-commutative binary operations.


Download data is not yet available.

Author Biography

Ananto Adi Nugraha, Universitas Lampung


Z. Pawlak, “Rough Sets,” Int. J. Comput. Inf. Sci., vol. 11, no. 5, pp. 341–356, 1982, DOI:

Z. Pawlak, Rough sets-theoretical aspects of reasoning about data. Dordrecht, Kluwer, 1991.

R. Biswas and S. Nanda, “Rough Groups and Rough Subring,” Bull. Polish Acad. Sci. Math., vol. 42, pp. 251–254, 1994.

D. Miao, S. Han, D. Li, and L. Sun, “Rough group, Rough subgroup, and their properties,” in Lecture Notes in Artificial Intelligence, 3641, 2005, pp. 104–113.

L. Jesmalar, “Homomorphism and Isomorphism of Rough Group,”, International Journal of Advanced Research. Ideas and Innovations in Technology, vol. 3, no. 3, pp. 1382–1387, 2017.

N. Bagirmaz and A. Ozcan, “Rough Semigroups on Approximation Spaces,” Int. J. Algebr., vol. 9, no. 7, pp. 339–350, 2015.

N. Kuroki, “Rough ideals in semigroups,” Inform. Sci., vol. 100, pp. 139–163, 1997.

B. Davvaz, “Roughness in rings,” Inf. Sci. (Ny)., vol. 164, pp. 147–163, 2004.

B. Davvaz and M. Mahdavipour, “Roughness in modules,” Inf. Sci. (NY)., vol. 176, pp. 3658–3674, 2006.

P. Isaac, Neelima, C.A., "Rough Ideals and Their Properties," Journal of Global Research in Mathematical Archives, vol. 1, no. 6, pp 90-98, 2013.

Q. F. Zhang, A. M. Fu, and S. x. Zhao, “Rough modules and their some properties,” in Proceeding of the Fifth International Conference on Machine Learning and Cybernetics, 2006.

B. Davvaz and A. Malekzadeh, "Roughness in Modules by using the Notion of Reference Points," Iranian Journal of Fuzzy Systems, vol 10, no. 8, pp 109-124, 2013.

E. Ozturk and S. Eren, "On Multiplicative Rough Modules," International Journal of Algebra, vol.7, no 15, 735-742, 2013.

A. K. Sinha and A. Prakash, “Rough Exact Sequences of Modules,” Int. J. Appl. Eng. Res., 2016.

A. K. Sinha and A. Prakash, “Injective Module Based on Rough Set Theory,” Cogent Mathematics, Vol. 2, 2015.

O. Kazancı and B. Davvaz, "On the structure of Rough prime (primary) ideals and rough fuzzy prime (primary) ideals in commutative rings", Information Sciences, vol. 178, no. 5, pp. 1343-1354, 2008.

Y. B. Jun, "Roughness of ideals in BCK-algebras," Scientiae Math. Japonica, vol. 57, no. 1, pp. 165-169, 2003.

D. Dubois and H. Prade, "Rough Fuzzy Sets and Fuzzy Rough Sets," Int. J. General Syst., vol. 17, pp. 191-209, 1990.

D. S. Dummit and R. M. Foote, Abstract Algebra, Third Edit. John Wiley and Sons, Inc., 2004.

W. Barnier and N. Feldman, Introduction to Advanced Mathematics. New Jersey: Prentice Hall, Inc., 1990.




How to Cite

Nugraha, A. A., Fitriani, F., Ansori, M., & Faisol, A. (2022). The Implementation of Rough Set on A Group Structure. Jurnal Matematika MANTIK, 8(1), 45–52.