Penggunaan Algoritma Jaringan Syaraf Tiruan Propagasi Balik Pada Klasifikasi Data Penggunaan Daya Listrik

  • Zeni Permatasari Universitas KH. A. Wahab Hasbullah
  • Agus Sifaunajah Universitas KH. A. Wahab Hasbullah
  • Nur Khafidhoh Universitas KH. A. Wahab Hasbullah
Keywords: Electric Power, Classification, Artificial Neural Networks, Reverse Propagation

Abstract

Electrical Energy has a large contribution to the operational costs that must be incurred. The selection of electrical equipment can be one alternative that might be implemented to reduce operational costs incurred. In its use sometimes users do not know any electrical equipment that uses high electrical power and low electrical power. Therefore a system was made to classify data on electric power usage. This data will be classified into four classes, such as: very efficient, efficient, quite efficient and wasteful. Data classification is done using a back propagation neural network algorithm. The training data set used is 190 data and the test data set is 30 data. Based on the training that has been done, the optimal parameters are learning rate 0.5, target error 0.001, max epoch 10000, and 25 hidden neurons. Tests show that the system is able to recognize data with an accuracy level of 96.67% and MSE of 0.03333. Of the 30 data that have been tested obtained 29 data in accordance with the target. Where the 29 data are classified into 4 classes, namely 9 data classes are very efficient, 6 data classes are efficient, 5 data classes are quite efficient and 9 data classes are wasteful. The results of this study can be concluded that the backpropagation neural network algorithm can be implemented to classify electrical power usage data.

Downloads

Download data is not yet available.

References

Kementrian ESDM Direktorat Jendral Ketenagalistrikan. 2017. Statistik Ketenagalistrikan Edisi No.31 Tahun Anggaran 2018.

Kosasi, Danny. 2016. ESDM : Rumah Tangga Adalah Sektor Paling Boros Energi, dalam https://www.greeners.co/berita/esdm-rumah-tangga-adalah-sektor-paling-boros-energi, diakses pada tanggal 1 Juli 2019.

Defiyanti, Sofi, dan Mohamad Jajuli. 2015. ”Integrasi Metode Klasifikasi Dan Clustering dalam Data Mining”, Konferensi Nasional Informatika, Hal. 13

Meilina, Popy. 2014. “Penerapan Data Mining Dengan Metode Kalsifikasi Menggunakan Decision Tree Dan Regresi”, Jurnal Teknologi Universitas Muhammadiyah Jakarta, Volume : 7, No.1

Pemerintah Indonesia. 2012. Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia No.13 Tahun 2012 tentang Penghematan Pemakaian Tenaga Listrik dalam https ://jdih.esdm.go.id/view/download.php?page=peraturan&id=760, diakses pada tanggal 25 Desember 2018.

CROSSMARK
Published
2020-03-17
DIMENSIONS
How to Cite
PermatasariZ., SifaunajahA., & KhafidhohN. (2020). Penggunaan Algoritma Jaringan Syaraf Tiruan Propagasi Balik Pada Klasifikasi Data Penggunaan Daya Listrik. Systemic: Information System and Informatics Journal, 5(2), 1-6. https://doi.org/10.29080/systemic.v5i2.679
Section
Articles