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Abstrak. Artikel ini menyajikan hasil penelitian tentang eksistensi
dari solusi persamaan integral fraksional nonlinier tipe Volterra
dengan kondisi batas campuran, beberapa hipotesis yang
diperlukan telah dikembangkan untuk membuktikan keberadaan
solusi persamaan yang diusulkan. Teorema Krasnoselskii, prinsip
Banach Contraction dan teori derajat Leray-Schauder adalah
teorema dasar yang digunakan di sini untuk mencari solusi hasil.
Dalam artikel ini juga diberikan contoh sederhana dari penerapan
hasil persamaannya.

Abstract. In this paper we present the existence of solutions for a
nonlinear fractional integral equation of Volterra type with mixed
boundary conditions, some necessary hypotheses have been
developed to prove the existence of solutions to the proposed
equation. Krasnoselskii Theorem, Banach Contraction principle
and Leray-Schauder degree theory are the basic theorems used here
to find the results. A simple example of application of the main
result is presented.
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1. Introduction

Fractional calculus is the field of mathematical analysis which deals with the
investigation and applications of integrals and derivatives of arbitrary order, the fractional
calculus may be considered an old and yet novel topic. Recently, fractional differential
equations have been of great interest. This is because of both the intensive development of
the theory of fractional calculus itself and its applications in various sciences, such as
physics, mechanics, chemistry, engineering.[1],[2],[3].

Integral equations appear in many engineering and scientific fields, such as unsteady
aerodynamics, viscoelasticity, fluid dynamics, lots of population growth systems, neural
network analysis, mathematical analysis of particle diffusion in an unstable fluid, heat
conduction in memory resources, transmission lines, Population dynamics theory, nuclear
reactors, inheritance systems. For details, see [4], [5], [6], [7], [8].

Boundary value problems have different applications. In addition to the previously
mentioned fields, this type of problem appears in chemical engineering sciences, models
of electromagnetic systems and thermoelectric theory. For more detailed information on
boundary conditions, see [9], [10]. For more details on local and non-local boundary
conditions, see [11],[12],[13],[14],[15],[16].

Feng, Zhang and Yang [13] in 2011 studied the existence and multiplicity solution to
the nonlocal boundary value problem, fixed-point theorems in the cone were the main tool
to prove the solutions. In 2014 Nyamoradi and Alaei [17] employed the Guo —
Krasnoselskii fixed point theorem in a cone to study the existence of solution to a new
fractional nonlocal mixed boundary value problem. In 2022 Ishak [18] investigated the
existence solution for a fractional BVP of the first sort with Hadamard type and three-point
boundary conditions using Krasnoselskii Zabriko theorem and Banach contraction
principle.

It is also well known that fixed-point theorems have been applied to various boundary
value problems to show the existence of solutions; for example, see [3],[5]. However, this
researcher’s remains not enough compared to the broad applications of this type of
equations. The aim of this paper is to fill this gap. in this study we will investigate the
existence and uniqueness solutions for the boundary value problem:

t
‘D*x(t) = g(t) +f Y(t,5)9(t,s,x(s))ds
x(0)=ax(y)+b, x(0)=w, 0<t<1,1<a<?2 (1)

Where D indicates the Caputo fractional operator ¢: [0, 1]x[0, 1]xX — X is a given
continuous function in Banach space (X,I.I) and C = C([0, 1], X) is Banach space of all

continuous functions from [0,1]— X endowed with the norm denoted by ||.||,

a,b,w[0,+),y:[0,1]x[0,1] - X is a given kernel , g:[0,1] - [0, +c0)is known
continuous function.

2. Preliminaries

In this section we will mention some basic definitions in fractional calculus.
Definition 2.1: [19] The fractional integral of order q is defined by

1 t
170 = 5 fo (¢t — )T f(s)ds, q>0

provided the integral exists.
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Definition 2.2: [19] The fractional derivative of order q is defined by

1 d\" (t o

n—1<gq <n, qg>0,Provided the right-hand side is pointwise defined on (0, +0).

Lemma 2.1: [18] For a, > 0, then the following relation hold:

CESY

"T(+1-0a)
k=01,..,n-1

DtP th=2=1 B > nand D%t* =0,

Lemma 2.2: [18] Let a > 0, then the differential equation
‘D, x(t) =0
Has a unique solution x(t) = cq+ ¢yt + - cp_qt™ L, ¢c; €R,i =1,2,..,n,wheren —
1<as<sn
In view of Lemma 2.2, it follows that
19¢D9%(t) = x(t) + co + c1t + g t™ L,
¢GiER,i=12,..,n

Theorem 2.1: [5] (Krasnoselskii fixed point theorem) Let M be a closed convex and
nonempty subset of a Banach space X. Let A, B be the operators such that (i) Ax + By e M
whenever x, y € M (ii) A is compact and continuous (iii) B is a contraction mapping. Then
there exists z € M such that z= Az + Bz.

Theorem 2.2: (Arzela -Ascoli theorem) Let (2 be a compact Hausdorff metric space. Then
M c C(02) is relatively compact < M is uniformly bounded and uniformly equicontinuous.
Lemma 2.3: Given f € €(0,1) n L(0,1), the unique solution of (1) is:

_[fe=9" a ("9 awy + b
X(t)—j(; Wf(S)dS-l' 1_af0 F(a) f(s)ds+Ta+wt (2)

Where,

t
fO =g® + f W6, $)b(t,5,x())ds

Proof: In view of lemma (2.2) the fractional differential equation (1) is equivalent to the
integral equation:
x(t) =I5 f () + co + cqt

tp_ a-1
x(t) = f (t=s) f(s)ds +cy +cit
0

I'()
Where ¢, c; € R. From the boundary conditions (1), we have ¢; = w and
a (Y-s)%*1 awy + b
— d -
Co 1—aj;, I'(a) fs)ds + 1-a
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By substituting ¢y, ¢; in x(t), the proof will be completed.
We will need the following hypotheses:
(H1) for K € R the inequality holds:
lp(t, s, x5) — p(t, s, x )l < Kllx; —x4]l, forall t,s € [0,1], xq,x, €EX

(H2) ll¢p(t,s,x)|| <L forallt,s,x € [0,1]x[0,1]xX, L € R* Further
g <& Yt )l < e 2= forall §,6,1€R*

3.  Main Result

Proves of theorems of existence and uniqueness solution for equation (1) will be given in
this section.

Theorem 3.1: Suppose that ¢: [0,1]x[0,1]x X — X is continuous and fulfilled Hland H2, if:
ad Ky“®
<1 (3)
AQ-a)(a+ 1)
Then equation (1) has at least one solution.
Proof: Let @, = {x € C:||x|| < r} where:
ay®(Aé + 6L) A6 +68L awy+b

A0—ala+D) e+ 1-a T¢=7
define tow mapping F, G on ¢, s.t.
e0© = [ I psyas
0 F( )

f”(y—s)“ ! awy + b
0

(GX)(t) = 1 F(a) f(S)dS + Ta + wt

For x,y € ¢,, by (H2) we obtain:
I(Fx) (@) + (GOl <

t(t— t(t— )
o G llg()lds + fy 5

(f_oollll)(t I [|@(t, s,x(s))||ds)ds +

L g (lds + 1 [T EZ (L, e 9l |6( 5,1()[[ds)ds +

awy+b| + |a)t|
§ § ot (t-5)%" agy® y(r=s awy+b
St 2o o LS+ or@ +/1(1 a)f r( ) ~Lds + 1o Tt
3 SL aéy?® asLy® awy+b
St e T oren T iacor@in T 1oa T @

ay*(A&+6L) AE+6L awy+b
— A1-a)(a+1) Al(a+1) 1-a

Which means Fx + Gx € ¢,

+w<r
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Since F is continuous because ¢ is continuous, we have to prove that F is compact. (Fx)(t)
is uniformly bounded on ¢,., as:
1PN < 2
T Al(a+1)
Since ¢ is bounded on [0,1]x[0,1]x¢, let:

Pmax = SJfB llp(t, s, x(O)II

s,t,x(t)€[0,1]x[0,1]x¢p;
Then for ty,t, € [0,1] we get

I(Fx)(t2) — (FX) ()l < Ptz — )77 = (8 — $)*Df(s)dsll +

I‘(a)

i e = )7 f(s)dsll

1
= (w70

tr = )7 = (1, = )% ) (g(5) +

(t; —9)* 1 (g(s) +

f Y(t, 5)¢(t S, x(s)) ds)” ds + 5 r(a) t1

I (6, 9)(t,5,%(s)) ds) | ds

< €|(t2 - tl)a - tg 6¢max|(t2 - tl)a - tg Etix 6¢maxt{l
IFa+1) Al(a+1) MNa+1) A'(a+1)
_ §l(t, — t)%| B O Pmax|(tz — t1)%|
Fa+1) Al(a+ 1)
6 max
<> Prax e )

F(a+1) * Al(a+1)
Which is independent of x there for (Fx)(t) is relatively compact on ¢, by Arzela-
Ascoli’s theorem (Fx)(t) is compact in ¢,.

Forx,y € ¢, and t € [0,1],by H1 we have:

1G)® — GON < == T Z (1 e, )| [ (8,5, x()) | ds)ds -

I'(a)

T (L 9 96, y) [ds)as

y _ a-—-1 t
< 1iajo ! r(i)) ( f Se~M=9||p(t,5,x(5)) — B(t,5,y()| ds)ds

[y yds

- /1(1 a)’0 F(a)

ad Ky“
< m”x -yl 4)
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It follows from (4) that (Gx)(t) is contraction mapping, this completes the prove.
Theorem 3.2: Suppose that ¢: [0,1]x[0,1]xX — X is continuous and fulfilled (H1). If:
:6K+a5K(y“—1) <1 )
Al —-a)l(a+1)
Then equation (1) has a unique solution.
Proof: Let ®: C — C is defined as:

(t— s) (
@0)(0) = [y L fs)ds + 1% [T

let supte[o,l]l(;b(t, s, O)I = M and choose:

; ~ f(s)ds +22 4w, te[01]

r> AE+86M ay*(Aé+6M) awy+b wt 6)
1-OAM(a+1) | (1-QAal(a+l) = (1-2)(1-a) = (1-2)

It is claimed that ®¢, C ¢, where:
o ={xeC:lxll <7
In fact, for x € ¢@,., by (4), (5) and H1 we obtain:

t _ a—-1
i@l < [ T2 lgolds
0
4y G (S e @6 5,x()) [ds) ds + 1% 7 L2 g () lds +

VT (1 e ) |6( 5,x()) [ ds) ds + 222 + e

_ja-1
< e o gL 07 (95, x(9)) — 9 (65, 0| +

(y=9)*"'  t —A(t-
16 (¢, 5, 0)l1)ds ds + o+ 24 [TT ([ 56729 || (8,5, x(5)) -

¢(t,s,0)|| + llp(t, s, 0)||ds)ds + 222 ““’Y”’ + wt

& + ré6K + M aéy“* radKy“ asMy“ awy+b
— I'(a+1) Al'(a+1) Al'(a+1) @@A-a)(a+1) A(Q-a)r(a+1) A(Q-a)r(a+1) 1-a

0K + adK(y* — 1) A&+ M ay*(A& + 6M) awy + b
</1(1 “ Ol a+ D ) Na+D 10-of@+D  1-a

+ wt

+ wt

<Sr+(A-QDr=r
Now we have to prove that the function @ is contraction. For x,y € C andt € [0,1], by
(5) and H1 we have:

I (@x) (&) = (@) (@)l
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< Jy (1 e O [[9(t5,x(9)) = $(t,5,y())|ds) ds +

T (e ) [ b(e 5, x()) = $(65,y()) [ ds)ds

t(t— )21 ¢
< P _ —A(t-s)
_fo @) K|lx yll(f_oo5e ds

+

a Yy — S)a_l ‘ —A(t—s)
1—a,[, ) KIIx—yII(J;OO(Se ds)ds
- 5K|lx — yll N ady®K|lx — yl|

T AM(a+1) A - (a+1)

- 6K + adK(y* - 1)
T Al -a)(a+1)
Q < 1 ensure that (®x)(t) is contractive. Therefor the conclusion of the theorem follows

llx —yll < Qllx -yl

from the contraction mapping principle.

Theorem 3.3: Let ¢: [0,T] X [0,T] X R > R , and let k € R such that 0 < k < é where

t* ay®

Y=t nta—aore+n

and M > 0 such that |¢(t, s, x(t))| < k|x| + M for all t € [0,T], x € R then problem (1)
has at least one solution.
Proof: Define an operator ¥: A — A as:

_ (-9t a (Y-t awy + b
lp(t)—wa(S)dSﬁ'l_aL I'(a) f(S)dS+ﬁ+ wt

Where A = C(]0,1],R) denote to the Bansch space of all continuous functions from
[0,1] = R endowed with the norm defined by |[x|| = sup{|x(t)|,t € [0,1]}. Let us define
a fixed-point problem by:

x =Wx @)
Now we need to prove the existence of at least one solution x € {0, T] satisfying (7). Define
aball B, c C[0,T] withr > 0 as:

B, ={x € C[0,T]: trer%3>T<]|x(t)| <r}
Where r well be given later, then it’s enough to show that B, — ([0, T]satisfies:
x # o¥Yx,Vx € 0B, and Vo € [0,T] (8)

Let us define H(o,x) = c¥x,x € C(R),0 € [0,T] Then by Arzesla’-Ascoli theorem
hys(x) = x — H(o,x) = x — dW¥x is completely continuous if (8) is true then the following
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Leray-Schauder = degree are  well define and by the  homotopy
invariance of topological degree it follows that:

deg(hgy, B,, 0) = deg(I — o¥x, B,,, 0) = deg(h,, B,,0) = deg(hy, B,,0) =
deg(l,B,,0) =1 # 0,0 € B,.. Where I denote the unit operator, by non-zero property of
the Leray-Schauder degree h, (x) = x — dWx = 0 for at least one x € B, in order to prove
(8) we assume that x = oWx for some ¢ € [0, T]and for all t € [0, T] such that:

t (t _ S)a—l

t
lx(®)| = |o¥x | = f W(lg(t)l +f |1/)(t,s)||¢(t,s,x(s))|ds)ds
0 —00

a (Y@—s)*t
1-— a,];) I'(a)

t
(9] + f 1t 1| (&, 5, x(5))|ds)ds

awy + b
1—a
6(klx| +M t% ay”®

7 Sernta-ore+n

|+|a)t|

<€+ )+ M,

S(klx| + M
SE+———

Which on taking norm (sup¢eforqlx| = IIx||) and solving for ||x|| yields:

)+ My

EQ(Mo + 1) + M,
o(od — Qk)

lIxll =

awy+b
Where M, = | 1)_/

| + |wt |, letting

a
§Q(Mo+ 1) + M,
r =

oo —0sk) 1

(8) hold, this completes the proof.

Example: Consider the following fractional integrodifferential equation

t
D3/2x(t) = sin(t) + f 2t + s)(t + x(s))ds

x(0) = 0.5x(1.25) +3, #%(0) =15 (9)

Comparing (9) and (1), we see that a =3/2,g(t) =sin(t),Y(t,s) =2t +
s,(;b(t, s,x(t)) =t+x(s), y=125 a=05, b =3, w=15.1fwechoose ¢ =1,
6=1 A=5,K =2, then H1 holds, and

6K +adK(y“—-1) (1)(2)+ (0.5)(1)(2)(1.25%%2 — 1)

AMl-a)(a+1) (5)(1 - 0.5)( 1.3293) <1

That is, (5) holds. Thus, by theorem 3.2, equation (9) has a unique solution.
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4. Conclusion

Based on the results and discussion, it can be concluded that the idea of Krasnoselskii
fixed point theorem was very effective to proof the existence solution for the proposed
equation. Also, under some suitable hypotheses and conditions we were able to complete
the proof of existence solution for the equation proposed in this paper smoothly. The present
work can be extended to the nonlocal and non-separable fractional boundary value problem.
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