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Abstrak. Di dalam penelitian ini, kami mempelajari dan mengonstruksi suatu dinamika model
mangsa-pemangsa. Kami memasukkan unsur kompetisi intraspesifik pada kedua pemangsa. Kami
menformulasikan fungsi respon Holling tipe | pada masing-masing pemangsa. Kami menganggap
semua populasi bernilai ekonomis sehingga dapat dipanen. Kami menganalisis solusi positifnya,
keeksisan titik keseimbangannya, dan kestabilan pada titik-titik keseimbangannya itu. Kondisi
kestabilan lokalnya kami peroleh dengan pendekatan kriteria Routh-Hurwitz. Kami juga
mensimulasikan model tersebut. Penelitian ini bisa dikembangkan dengan formulasi fungsi respon
yang berbeda dan pengoptimalan pemanenan.
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Abstract. In this research, we study and construct a dynamic prey-predator model. We include an
element of intraspecific competition in both predators. We formulated the Holling type | response
function for each predator. We consider all populations to be of economic value so that they can be
harvested. We analyze the positive solution, the existence of the equilibrium points, and the stability
of the balance points. We obtained the local stability condition by using the Routh-Hurwitz criterion
approach. We also simulate the model. This research can be developed with different response
function formulations and harvest optimization.

Keywords: Prey-predator; Intraspecific; Harvesting; Routh-Hurwitz

How to cite: M. Ikbal and Riskawati, “Dynamics of Predator-Prey Model Interaction with Harvesting
Effort”, J. Mat. Mantik, vol. 6, no. 2, pp.93-103, October 2020.


http://u.lipi.go.id/1458103791
mailto:ibbal@umma.ac.id
mailto:riskawati@umma.ac.id

Jurnal Matematika MANTIK
Volume 6, No. 2, October 2020, pp. 93-103

1. Introduction

Mathematical models can be used in observing individual behavior, population
dynamics and population linkages in a system. Mathematical models can also be used in
determining a policy. Mathematical modeling in the field of ecology is very interesting to
study considering the many factors that affect the growth and life of living populations and
the balance of organisms. The process of dynamics of organisms can be modeled
mathematically by using differential equations involving continuous time or discrete time.
One of the mathematical models used to explain this natural phenomenon is the prey-
predator population model. Competition between predators and harvesting factors in
populations is very important in the discipline of ecology. Many researchers can evoke
interesting things from behavioral dynamics in population ecosystems.

By combining the two aspects above, namely the aspects of competition between
predators and harvesting, population dynamics can be expressed in a model. One of the
policies related to the use of living things is harvesting. Intraspecific competition factors
are also interesting to study. Intraspecific competition is competition between predators in
competing for prey. This is another factor in population dynamics that can affect the
stability of a system.

There are many researchers who model prey-predator interactions. [1] examined the
resistance of predators in the prey-predator model system with non-periodic solutions. [2]
discusses the dynamics of the prey-predator with diseased predators. [3] in his journal
discussed global dynamics of a prey-predator model with antipredator behavior and two
predators. [4] discuss the dynamics of the prey-predator model by quadratic harvesting.
Research from [5] discusses global dynamics and control of predator prey models with
Holling type 11 response functions. [6] examined the effect of harvesting and competition
between predators in the prey-predator model. [7] discuss a model of interaction of three
species in one habitat. [8] discuss the complex dynamics of a three-species food chain
model with Holling type 111 response functions.

Many previous researchers have examined prey-predator population models. We
examine prey-predator population models with respect to intraspecific competition for
predators and considering the economic value of all populations. Our study constructs the
factors influencing prey-predator population dynamics as investigated by previous
researchers, but we add intraspecific competition and harvesting factors simultaneously to
all three populations.

2. Assumptions and model

In this model, there is an interference between predators as modeled by other
researchers [1], [6], [8], [9]- There are researchers who studied the intraspecific
competition coefficient [9]. Researchers frequently use the Holling-type | response
function [3], [5], [8]. The response function is used by researchers in their models [10]-
[13]. Researchers also use the harvesting rate [4], [6], [14], [15].

The assumptions used are:
The prey growth rate uses the logistical growth rate,
Predators compete with each other for prey,
All of predators uses the Holling type | response function for predation,
There is an intraspecific competition for each predator.
All of population have interest economic values.
The model is formulated as follows:
dpP

P
E=TP (1_E)_a1PH1_a2PH2_qlE1P (1)
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dH, 2
F =eaq,PH, — g1H," — pyH H; — d1H; — q2E;Hy
dH, 2
F = e;a,PHy; — go,H,” — BoH Hy — dyHy — q3E3Hy

with initial condition
P(0) >0, H;(0) > 0, H,(0) > 0. (2)
The first predator (H;) and second predator (H,) are assumed to have direct access to
prey (P). The effect of disturbance in the growth rate of competitors is assumed to be
proportional to the density of the predator population with B, and B, respectively given
disturbance rates. The parameter a; and a, represent predator rates for predator species H;
and H, respectively. The parameter g, and g, represent coefficient intraspecific
competition for two predators H; and H, respectively, here d, and d, are their mortality
rate. The parameter ¢; and e, are the predator’s conversion efficiency. However, the
predation functions of the two predators were made different - one following a Holling type
I response and the other following a Holling type Il response. Besides experiencing a
reduction due to the predation function, the prey population grew logistically with r as the
intrinsic growth rate and K as the holding capacity. The parameter q,, q,, and q, are the
catchability coefficient of susceptible prey, first predator, and second predator,
respectively. The parameter E;, E,, and E5 are the harvesting effort prey, first predator, and
second predator, respectively.

3. Equilibrium points and stability analysis

3.1. Equilibrium points
Equilibrium points of the system (1) are given below:
o The trivial equilibrium point Ty,= (0, 0, 0),
e The predator free equilibrium point T; = (K - @ 0, 0),
e The H;-free boundary equilibrium state
T, = <K(q3E3a2 +aydy + 19, — q,9,E) 0 Kre,a; — rq E5 — dyr — Ke2a2q1E1>
T Ke,a,> + g,

Keya,® +1g,

o The H,-free boundary equilibrium state
T3
. <K(CI252“1 +a;dy + 791 — q,91E,) Krejay —rqyE; —dir — Kejayq E, 0)

)

Keja,? +rg, Keja,?> +1rg;
e The interior equilibrium point T, = (P*, H,", H,"), where

P = K(q1E19192 + @2E202B; + qzEsa4 By + diay By + dyas By + 11 )

T Keyayayf; + Keyaya By + 7B fo — Keyay2g, — Keyay? gy — 19192
_ K(q1E1B1B2 + q2E2a195 + q3E30,91 + dia19; + dyazgq +79192)

Keja a,f8, + Keyay a3, + 761, — Kejay2g, — Keya,%g, — 1919
H* = Keja1q1E1 9, + Ke,ay? oy + Kdie,a,” + Kreaanfy + gorqREz +1d1 g,
! Keja,a,6, + Keyaiay81 + 1718, — Kejay2g, — Ke,aygy — 19192
_ (Keya1a,q3E5 + Keyay 191 Eq + Kejaya,d, + Krejay g, + 761q3E5 +1d,yf1)

Keja,a,6, + Keyaiay8 + 1718, — Kejay2g, — Keyaygy — 19192
.« _ Keia1q E1 B, + Ke,aia,q2E, + Kdie,aqa; + Kreyaz gy + BorqRE, +1dq B,

Keja 1,8, + Keyaya,8, + 761, — Kejay2g, — Keyay? gy — 19192
_ (Keya,*q3Es + Keya,91q1Ey + Keyay’d, + Kreyay 8, + 1g1q3E; + 1dyg,)

Keia,a,6, + Keyaiay81 + 718, — Kejay2g, — Ke,a2 gy — 19192

H,
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3.2. Stability analysis

The stability analysis equilibrium point of the system (1) is studied and determined.
The point Ty, is trivial equilibrium point. Jacobian matrix of the model system (1) is

11 J1iz Ji3
J=\21 Jzz J23 3)
31 J32 J33
where,
2rP
Jin=r— T —a1Hy —ayHy — qq1E;
Jiz2 = —a4P
Jiz3 = —a,P

J21 = eqa1Hy
J22 = e;ayP — 2g,Hy — B1H; — di — q2E;

J23 = —311‘11
J31 = e;aH;
J32 = —B2H,

J33 = e;a,P — 2g,H; — BoHy — dy — q3E;
Theorem 1. Equilibrium point T; local stable if r > q,E;, q,E, + dy > w,

and gz E; + d, > X220 -0:F)

"
Proof. The result of substitution equilibrium point T, to Jacobian Matrix (3)
Ji Jiz i3
](T1) = ]211 ]212 ]213 (4)

1 1 1
31 ]32 ]33

where
]111: q1E1—7
1 a;K(r — q,E)
Jig =777
r
1 a,K(r — q1E1)
Jis=———
r
]211 =0
Keja,(r — q1E1)
1212 = " —qE; —dy
1213 =0
]311 =0
J52=0 ( )
Keya,(r —qq1E;
12%3 = - —q3E; —d;

Characteristic equation matrix J(T;) is

_Ke1a'1(r— q1E1) _Keza’z(r— q1E1)
r r

(l - q1E1 + r) (l + quz + dl) (A

+ q3E3 + dz) (5)
=0
The roots of the equation (5) is negative if r > q,F;, q,E, +d; >

Kepay(r—qi1E1)

Keiay(r—q1E1) and
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Theorem 2. Equilibrium point T, local stable if J2, < 0,]%, < 0,]2; <0, J#,]%, +
JiJ3s + J52J33 > JisJ5 and Jis)54)3, > Jii)52)3s
Proof. The result of substitution equilibrium point T, to Jacobian Matrix (3)

I T i

](T2)= ]221 ]222 ]223

(6)
55 T3
where
J2,=r — 2r(qsEzaz + azd; + 192 — q192E1)
1 Kezazz + rg,
[Krezaz —rq3zE; —dyr — KezaquEl] E
2 Ke,a,2 +1g, 41t
2 K(qzEza; + azd; +rg; — q192E1)
Jiz=—m K >
eaz” +1g;
2 K(qzEsa; + azd; + 179, — q192E1)
Jiz=—a K >
eaz” + 719>
1221 =0
2 = e K(qzEzaz + azd; + 792 — q192E1)
22 S Kezazz + rg»
Kreya; —rqzEs — dyr — KeyapqqEy
_'81[ Kera2 ]_d1—CI2Ez
eaz° + 719>
J33=0
J2, = [Krezaz —rq3E3 —dyr — Kez“zQ1E1]
31T en Keya,?2 +1g,
) Kre,a, —rq3Ez —d,r — Keyapq1E4
J52 = =P [ K 2 ]
exaz” +1g;
J2, = eyar K(q3Eza; + azd; + 1792 — q192E1)
3T Keya,2 +1g,
5 [Krezaz —rq3E; —dy,r — KezaquEl] g E
92 Keya,? + 19, 2 —q3L3
Characteristic equation matrix J(T,) is
MB+A12+A,1+4;=0 ©)

where,
Ay = —Ui + J5 +133)
A = ]gﬂzzz ‘é‘ ]121]3223 +2 ]222]323 — JisJ5
Az = JizJ5U22 — Jid22)53
The roots of the equation (7) is negative if J2, < 0,J3, < 0,]2;, <0, J2,J%, +
JiJ3s + J32033 > J3s)51 . Jial332 > JiJ32)5s and A A, > Ay
Theorem 3. Equilibrium point T; local stable if J3, + J3, +J3; <0, J3,)3, + J3.)3; +
J3:J3s > Ji2J31,Ji2)3035 > Jil32)33, and BB, > B
Proof. The result of substitution equilibrium point T to Jacobian Matrix (3)
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Jir Ji2 Jis
](T3)= ]231 ]5’2 ]233 (8)

3 3 3
31 ]32 ]33

where

3 _ (q2E2a1+a1d1+7g91-q191E1) Kreja1—rqzE;—dir—Keja1q1E1
]11—7”_27"[ 2 —ag 2 - q1E;
Keja12+1rg, Keja°+rgy

(q2Ez2a1 + a1dy + 791 — ‘hglEl)]
Kelalz + Tgl
— [(quzal +a;dy +rg; — Q191E1)]
2 Kelalz + Tgl

Jiz = —a1[

3 _
Jiz =

Kreja; —rqEy — dir — KelalqlEl]

3
=ea
Ja=e 1[ Keya;?> +rg,

Krejaqy —rqyE, — dqr — KelalqlEl]

3 = P—Z[
J22 =e1q 91 Keia;? + 19,

Kreia; —rqE, — dir — Keqa1q1E4
_:81 [ 2 ] - d1 - q2E2
Keja* +1g,q
3 KT'elafl - quEZ - dlr - KelalqlEl
Jo3 = —.31[ X 2 ]
e1a1° + 191
]331 =0
]332 =0

3, = eyar K(q:Eza; + a1dy + 191 — q191E1)
33 272 K61a12 + rgq1
[Krelal —1rqyE, —dir — Keja1q1E;
—p2

—d, — q3E
Keja;? +rgq ] 2 353

Characteristics equation matrix J(T3) is

/13 + Bll‘lz + le + B3 = 0 (9)
where,

B, = _(/f1 + ]232 +]333)
Ji3e + JiJ3s + I35 — I3

3 13713 3 13 13
1 21]33_ 1 22]33'

Ty
w N
I

To ensure the stability of model system with equilibrium point T3, the point must
qualify of the Routh-Hurtwiz criteria. The equation (9) have negative roots if /3, + J3, +

J33 <0, 33, + 3133 + J32033 > Ji2J31. J32J31J33 > Ji1J32)33, and BiB, > Bs.
Theorem 4 Equilibrium point T, local stable if Jf; + J5, + /53 < 0, Jf1 )52 + Ji)33 +
J52J3s > Jials1 + Jials1 + J33l50. Ji)as)52 + Jiodsiss + Jis3s: > Ji)3.)3s +
Ji2)33]31 + JiaJ32J31, and C1C, > Cs.

Proof. The result of substitution equilibrium point T, to Jacobian Matrix (3)
Jih T2 Jis
J(Ty) = ]5}1 ]gz 133 (10)

4 4 4
31 ]32 ]33

where
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4 2rP* . .
Jii=71— K —aHy —ayHy —qqEq
fz = —q, P*

f3 = —a,P*

4 *
21 = eja Hy

32 = ey, P* —2g,H," — B1H," — dy — qzE;,

4 __ *
23 = —P1Hy
4 __ H *
31 = €010
4 __ *
32 = —B2H;

]§3 = eya,P* — 2g,H; — ﬂzHl* —d; —q3E3

Characteristics equation matrix J(T,) is

/‘{3 + 61/12 + Cz){ + C3 = 0 (11)
where,

Ci= —Ut + J32 +J33)
C, = ]i %2 ‘: Ji %3 1‘ ]ngg'% : ff §1 - ]§3]%:1 : 133]%2 i 4 a s
C3 = Jiz3)32 + Ji2z21)33 + Jisf3122 — JidJ22033 — Ji2J23)31 — Ji3/32)21-

To ensure the stability of model system with equilibrium point E,4, the point must
qualify of the Routh-Hurtwiz criteria. The equation (11) have negative roots if J{; +
J32 +133 < 0, Jis2 + JiJ3s + J22J33 > JiaJan + Jia)31 + J33)32, 13332 +
Jta3s + Jil322 > Jia2)3s + Ji2las)31 + Jial32J21. and CC; > Cs.

4. Numerical Simulation

In this section we simulated the model with some parameter values. The parameter
values was adopted from literature [3], [6], [8], [9], [11], [15]. We try simulated the model
with some condition. The first condition with parameter with E; = 0.28773096, E, =
0.24093140 and E; = 0.13141604. The second condition with parameter E; = 0.2, E, =
0.4 and E; = 0.3. The third condition withE; = 0.2, E, = 0.3 and E5 = 0.4.

To see the system is in a stable state, a numerical simulation is performed with parameter
estimates according to the following Table 1.

Table 1. Parameter values

Parameter Values
r 1
K 100
o 0.21
0y 0.274
e 1
e, 1
g, 0.1
g, 0.2
B, 0.05
B, 0.06
d; 0.05
d, 0.06
q1 1
q2 1
qs 1
E; 0.5
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Parameter Values
E, 0.5
E3 0-5

With the parameter values in Table 1, the simulation results are given nonnegative
equilibrium points:
To = (0, 0, 0)
T, = (50,0,0),
T, = (3.288183092, 0, 1.704810836),
T3 = (3.669623060, 2.206208426 , 0),
T4 = (3.149229952, 0.4190122146, 1.388741370).

o
o
=]
w |
=
o
©
=]

(@)

=)
=5

b

=)

w
E
.
=
=)

(b)

(=]
=)
3
54
=
.
=)
=1

(©

Figure 1. Numerical simulation model. (a) prey population density; (b) first predator population
density; (c) second predator population density
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Figure 2. Time series of the model with E; = 0.5, E, = 0.5and E; = 0.5
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Figure 3. Time series of the model with E; = 0.2, E, = 0.4 and E; = 0.3
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Figure 4. Time series of the model with E; = 0.2, E, = 0.3 and E; = 0.4
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Figure 1 shows the existence of each population. With a combination of the
parameters presented, the food supply of predators is more than the predators themselves.
the system is expected to last a long time with a combination of these parameters.

Figure 2 shows the simulation results with given parameters with the same parameter
(E, = 0.5, E, = 0.5 and E; = 0.5) of harvest effort for all populations. In this simulation,
the system is stable and lasts a long time with the same harvesting effort conditions. To
demonstrate system dynamics, we simulate models with varying combinations of harvest
effort parameters.

By changing the number of harvesting business parametersto E; = 0.2, E, = 0.4 and
E; = 0.3, the simulation plot will look different. Figure 3 shows that the number of the
first predator population is reduced compared to other populations because the number of
harvesting efforts is also the highest.

With different parameter numbers (E; = 0.2, E, = 0.3 and E; = 0.4), Figure 4
shows the same symptoms, the second predator population is the smallest because the
number of harvesting efforts is the largest.

Apart from the stability of the system, the policy in harvesting in this study is a matter
of focus. In this study, harvesting also determines the stability of a system, if the harvesting
of a population changes and does not match the harvest rates in other populations, it will
cause system stability disturbances. It can be seen clearly in the simulation that produces
dynamic graphs in Figures 2, 3, and 4, the population density of one predator is sometimes
more than other predators, and vice versa.

The results of this study are intended to show in general that harvesting efforts have a
large enough impact on population sustainability and also have an impact on the system.
Harvesting effort can interfere with the growth and activity of predators. We look visually
in the image with the selection of different harvesting efforts. Population that is harvested
in large numbers to other populations will decrease in population.

This research can be developed by considering other factors that make a system
dynamic. For example, further researchers can optimize harvesting efforts so that economic
benefits can be clearly measured.

5. Conclusions

In this section we will make conclusions of this research. This study focuses on the
dynamics of prey-predator populations with harvesting effort for all of population. There
are 5 non-negative equilibrium point of the system. The interior point is T,. The
equilibrium point T, stabel if JT,+ J3, +J33< 0, JiiJ32 + JiJas + J32J3s >
Ji2d21 + J13J31 + 133032, JiJ33052 + J12d31J33 + 13031032 > J1d32033 +
Ji2J53)%1 + JisJ52J31, and €{C, > C3. Harvesting effort have impact to system.
Harvesting efforts will reduce the population size so that it can affect the stability of the
dynamics of the prey-predator population system. The system will be stable and exist if we
have control quantity of the harvesting effort. The system will be stable and exist if we
have control’s the harvesting effort.

6. Acknowledgment

Thanks to friends who helped this research and the Directorate of Research and
Community Service Deputy for Strengthening Research and Development, The Ministry
of Research and Technology/ National Research and Innovation Agency in Indonesia
which has funded this research.

References

[1] J. Alebraheem and Y. Abu-Hasan, “Persistence of predators in a two predators-one

102



(2]

(3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

M. lkbal, Riskawati
Dynamics of Predator-Prey Model Interaction with Harvesting Effort

prey model with non-periodic solution,” Appl. Math. Sci., vol. 6, no. 17-20, 2012.

K. pada Das, “A Mathematical Study of a Predator-Prey Dynamics with Disease in
Predator,” ISRN Appl. Math., vol. 2011, 2011, doi: 10.5402/2011/807486.

C. Li, Y. Zhang, J. Xu, and Y. Zhou, “Global Dynamics of a Prey-Predator Model
with Antipredator Behavior and Two Predators,” Discret. Dyn. Nat. Soc., vol. 2019,
2019, doi: 10.1155/2019/3586508.

R. P. Gupta and P. Chandra, “Dynamical properties of a prey-predator-scavenger
model with quadratic harvesting,” Commun. Nonlinear Sci. Numer. Simul., vol. 49,
2017, doi: 10.1016/j.cnsns.2017.01.026.

T. K. Kar and H. Matsuda, “Global dynamics and controllability of a harvested prey-
predator system with Holling type IIT functional response,” Nonlinear Anal. Hybrid
Syst., vol. 1, no. 1, 2007, doi: 10.1016/j.nahs.2006.03.002.

B. Mukhopadhyay and R. Bhattacharyya, “Effects of harvesting and predator
interference in a model of two-predators competing for a single prey,” Appl. Math.
Model., vol. 40, no. 4, 2016, doi: 10.1016/j.apm.2015.10.018.

J. N. Ndam, J. P. Chollom, and T. G. Kassem, “A Mathematical Model of Three-
Species Interactions in an Aquatic Habitat,” ISRN Appl. Math., vol. 2012, 2012, doi:
10.5402/2012/391547.

R. K. Upadhyay and S. N. Raw, “Complex dynamics of a three species food-chain
model with Holling type 1V functional response,” Nonlinear Anal. Model. Control,
vol. 16, no. 3, 2011, doi: 10.15388/na.16.3.14098.

N. Ali, M. Haque, E. Venturino, and S. Chakravarty, “Dynamics of a three species
ratio-dependent food chain model with intra-specific competition within the top
predator,” Comput. Biol. Med., vol. 85, 2017, doi:
10.1016/j.compbiomed.2017.04.007.

A. Rojas-Palma and E. Gonzélez-Olivares, “Optimal harvesting in a predator-prey
model with Allee effect and sigmoid functional response,” Appl. Math. Model., vol.
36, no. 5, 2012, doi: 10.1016/j.apm.2011.07.081.

A. Chatterjee and S. Pal, “Interspecies competition between prey and two different
predators with Holling IV functional response in diffusive system,” Comput. Math.
with Appl., vol. 71, no. 2, 2016, doi: 10.1016/j.camwa.2015.12.022.

R. D. Parshad, E. Quansah, K. Black, R. K. Upadhyay, S. K. Tiwari, and N. Kumari,
“Long time dynamics of a three-species food chain model with Allee effect in the top
predator,” Comput. Math. with Appl.,, wvol. 71, no. 2, 2016, doi:
10.1016/j.camwa.2015.12.015.

C. Ji, D. Jiang, and N. Shi, “A note on a predator-prey model with modified Leslie-
Gower and Holling-type II schemes with stochastic perturbation,” J. Math. Anal.
Appl., vol. 377, no. 1, 2011, doi: 10.1016/j.jmaa.2010.11.008.

X.Y.Meng, N. N. Qin, and H. F. Huo, “Dynamics analysis of a predator—prey system
with harvesting prey and disease in prey species,” J. Biol. Dyn., vol. 12, no. 1, 2018,
doi: 10.1080/17513758.2018.1454515.

T. K. Kar and S. K. Chattopadhyay, “A dynamic reaction model of a prey-predator
system with stage-structure for predator,” Mod. Appl. Sci., vol. 4, no. 5, 2010, doi:
10.5539/mas.v4n5p183.

103



