Educational Data Clustering Menggunakan K-Means pada Seleksi Penerimaan Peserta Didik Baru Madrasah Aliyah Negeri Unggulan


  • Noor Wahyudi Universitas Islam Negeri Sunan Ampel
  • Yunita Ardilla Universitas Islam Negeri Sunan Ampel
  • Nanik Puji Hastuti Direktorat Kurikulum, Sarana, Kelembagaan, dan Kesiswaan Madrasah Kementerian Agama



EDC , K-Means, Student Admission, Madrasah


The National Students admissions (SNPDB) for Madrasah Aliyah is managed by the Directorate of Madrasah Curriculum, Facilities, Institutions and Student Affairs. It is essential for the Directorate and Madrasah to explore patterns and knowledge from admission data in formulating policies and programs from to MAN. Educational Data Clustering (EDC) is a data mining method that is implemented in the education area. K-means is applied to group students based on the results of learning potential and academic potential tests that will be used for development program and student admission policies at MAN-IC. The best results from the experiments tested with Silhouette dividing the data into 2 clusters are excellent and good. The Silhouete value indicates the cluster structure in the medium predicate.. The results present the distribution of clusters in 23 MAN-IC, distribution of personality profiles of prospective students, as well as recommendations for conducting tests in Madrasah.


Download data is not yet available.


H. Klimusová and P. Květon, “Psychometric Properties of the Learning Potential Test,” Procedia - Soc. Behav. Sci., vol. 217, pp. 652–656, 2016, doi: 10.1016/j.sbspro.2016.02.089.

A. Muhid, A. Ridho, A. Yusuf, N. Wahyudi, Z. Ulya, and A. H. Asyhar, “Big Five Personality Test for State Islamic Senior High School Students in Indonesia,” Int. J. Instr., vol. 14, no. 2, pp. 483–500, 2021.

A. Muhid, A. Yusuf, Kusaeri, D. C. R. Novitasari, A. H. Asyhar, and A. Ridho, “Determining scholastic aptitude test as predictors of academic achievement on students of islamic school in indonesia,” New Educ. Rev., vol. 61, pp. 211–221, 2020, doi: 10.15804/tner.2020.61.3.17.

A. Yusuf, K. Kusaeri, A. Hidayatullah, D. C. R. Novitasari, and A. H. Asyhar, “Detection of potential errors in measurement results of madrasa admission instruments in Indonesia,” Int. J. Eval. Res. Educ., vol. 10, no. 4, pp. 1334–1343, 2021, doi: 10.11591/IJERE.V10I4.21412.

A. Dutt, M. A. Ismail, and T. Herawan, “A Systematic Review on Educational Data Mining,” IEEE Access, vol. 5, no. c, pp. 15991–16005, 2017, doi: 10.1109/ACCESS.2017.2654247.

A. Aleem and M. M. Gore, “Educational data mining methods: A survey,” in Proceedings - 2020 IEEE 9th International Conference on Communication Systems and Network Technologies, CSNT 2020, 2020, pp. 182–188, doi: 10.1109/CSNT48778.2020.9115734.

E. Umargono, J. E. Suseno, and V. G. S. K., “K-Means Clustering Optimization using the Elbow Method and Early Centroid Determination Based-on Mean and Median,” no. Conrist 2019, pp. 234–240, 2020, doi: 10.5220/0009908402340240.

Z. M. Ali, N. H. Hassoon, W. S. Ahmed, and H. N. Abed, “The Application of Data Mining for Predicting Academic Performance Using K-means Clustering and Naïve Bayes Classification,” Int. J. Psychosoc. Rehabil., vol. 24, no. 03, pp. 2143–2151, 2020, doi: 10.37200/ijpr/v24i3/pr200962.

H. A. Mengash, “Using data mining techniques to predict student performance to support decision making in university admission systems,” IEEE Access, vol. 8, pp. 55462–55470, 2020, doi: 10.1109/ACCESS.2020.2981905.

M. Yoalifa, M. Wati, N. Puspitasari, and U. Hairah, “Analisa Mutu Sekolah Pada Provinsi Kalimantan Timur,” SAINS, Apl. KOMPUTASI DAN Teknol. Inf., vol. 3, no. 2, pp. 53–60, 2021, doi:

A. H. Asyhar et al., “Graph Degree Linkage Clustering for Identify Student’s Performance on Kompetisi Sains Madrasah in Indonesia,” in Smart Trends in Computing and Communications: Proceedings of SmartCom 2020, 2021, pp. 211–220.

Kusaeri et al., “Stepwise Iterative Maximum Likelihood Clustering Based on Kompetisi Sains Madrasah’ Scores for Identifying Quality of Junior High School Grading Distribution,” in Smart Trends in Computing and Communications: Proceedings of SmartCom 2020, 2021, pp. 221–229.

V. T. P. Swindiarto, R. Sarno, and D. C. R. Novitasari, “Integration of Fuzzy C-Means Clustering and TOPSIS (FCM-TOPSIS) with Silhouette Analysis for Multi Criteria Parameter Data,” Proc. - 2018 Int. Semin. Appl. Technol. Inf. Commun. Creat. Technol. Hum. Life, iSemantic 2018, pp. 463–468, 2018, doi: 10.1109/ISEMANTIC.2018.8549844.




How to Cite

Wahyudi, N., Ardilla, Y., & Hastuti, N. P. (2022). Educational Data Clustering Menggunakan K-Means pada Seleksi Penerimaan Peserta Didik Baru Madrasah Aliyah Negeri Unggulan. Systemic: Information System and Informatics Journal, 7(2), 8–12.