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Kata Kunci  Abstrak 

Word embedding, ujaran 
kebencian, deteksi 
online. 

 Word embedding merupakan teknik representasi kata atau kalimat dalam ruang vektor. 
Representasi tersebut ditujukan untuk membangun sebuah model yang sesuai untuk 
tugas khusus terkait penggunaan kata atau kalimat tersebut, contohnya, sebuah model 
kemiripan antar kata atau kalimat, sebuah model dari hubungan antar pengguna 
Twitter. Penggunaan word embedding sangat bermanfaat dalam proses riset analisa 
sentimen karena membantu dalam pembentukan model matematika dari kalimat, selain 
itu word embedding juga bermanfaat untuk proses komputasi yang lebih lanjut. 
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 Word embedding is a technique to represent sentences in vector space. The representation 
itself is carried-out to build a model that would suffice in representing a particular task 
related to the use of the sentence itself, for example, a model of similarity among 
sentences/words, a model of Twitter user connectivity, and demographics of tweets 
model. The use of word embedding is a handful to the sentiment analysis research 
because it helps build a mathematical-friendly model from sentences. The model then will 
be suitable as feeds for the other computational process. 

 

1. Background 
Current research in sentiment detection that 

focuses on racism and hate speeches can be 
categorized into two categories, namely: (1) 
feature engineering with traditional classifiers 
using word embeddings architectures that classify 
where word embeddings are part of the feature set 
and (2) end-to-end deep learning architecture that 
classifies the text while learning word embedding 
as a byproduct. 

Feature engineering includes capturing 
linguistic, textual, topical features, and semantic 
information. For example, Hasanuzzaman et al. [2], 
Mondal et al. [9], and Tulkens et al. [10] use 
linguistic-template and demographics discourses-
dictionaries to define "racism" then utilize classic 
classifiers such as SVM to detect "racisms."  

In the case of deep neural network 
approaches, we specifically focus on integrated 
approaches that do not rely on hand-crafted 
features and external classifiers, for example, 
Huang et al. [11], Kim (2014) [12] [13] and 
Vosoughi et al. (2016) use Neural Network models 
to generate word embeddings specifically for 
sentiment detection tasks. 

2. Feature Engineering and Classifiers 
The research by Hasanuzzaman et al. [2] 

uses demographic embodied with pre-trained 
word embedding. The dataset contains three 
months of Twitter messages dated from February 
5, 2015, to May 5, 2015. Despite the use of slur 
databases [14] [15] as references, it was clearly 
stated in their publication [2] that the existence of 
slurs does not define the offensiveness of a tweet. 
Demographic features: age, gender, and location 
are incorporated into the embedding during 
training.  
The data were annotated through the crowd 
flower crowdsourcing platform [16]. Each tweet 
was labeled by three raters who were asked the 
labeling of a tweet can be considered racist or not 
based on age, gender, and location of the tweet's 
owner. The label came in three choices: Yes 
(racist), No, and Unsure. Like Tulkens et al. [10], 
Hasanuzzaman et al. [2] rely on SVM for the 
classification model. The slight difference was that 
Hasanuzzaman et al. [2] use linear SVM with a 
different setup of input configurations 
implemented in Weka [17]. The input 
configuration varies from n = 1 to 4 grams and 
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word2vec, independently or combined with all 
demographic embeddings. Hasanuzzaman et al. [2] 
demonstrated that word2vec, combined with all 
demographic embeddings (age + gender + 
location), outperformed any other input model. 

Mondal et al. [9] focus on measuring the 
large scale of hate speeches inside social media. 
The approach is an unsupervised method relying 
on sentence templates and Hatebase [18] 
("world's largest online crowdsourced repository 
of structured, multilingual, usage-based hate 
words" [9]). The datasets come from two social 
media: Twitter and Whisper messaging platforms. 
In both of the two sources, the data are taken from 
June 2014 to June 2015. The aspects of hatred 
were based on: race, religion, disability, sexual 
orientation, ethnicity, and gender [19]. These 
aspects are used as baseline categories. The 
limitation is that the hate speeches that do not 
conform to the sentence template are not 
detectable. The primary research output is 
exploratory statistics of hate speeches based on 
the anonymity of speech across different 
countries. 

The research by Tulkens et al. [10] 
approach was developing "discourses dictionaries" 
using Facebook's comments page as the primary 
input. Two pages of themes were selected; those 
were the anti-Islam theme and the right-wing 
theme. Comments were classified as racist or not 
by three annotators. Three types of dictionaries 
were built: the first was based on Dutch Linguistic 
and Inquiry Word Count (LIWC) [20], utilizing its 
word categories as a baseline for a discourse 
dictionary. The second dictionary was built from 
words classified as racist in the training data. The 
third dictionary was an expansion from each word 
in the second dictionary by adding the five closest 
words based on word2vec (Mikolov et al., 2013) 
[21] using the cosine similarity method. This 
dictionary-based approach produced an n-
dimensional vector containing numbers that had 
been normalized and scaled. The numbers 
resulted from dividing words' frequencies in each 
category with the total of words in comments. The 
vector was used as input for nonlinear SVM with 
RBF kernel implemented in scikit-learn [22]. The 
overall performance of classifications concluded 
that both the original and the word2vec expansion 
discourse dictionaries from training data 
outperformed the result from the LIWC dictionary. 

3. Feature Extraction and Deep 
Learning 

Another version of the word embeddings 
approach was introduced by Huang et al. [11]. The 
research aimed to capture the semantics of words 
in the vector space model. The primary output 
from this research was an improvement of word 
embeddings which can predict the next word by 
using joint training of local and global context 

within a neural language model. The dataset 
chosen was the April 2010 Wikipedia corpus. Ten 
windows (5 words after and before) were used as 
local context with 50-dimensional embeddings 
and 100 hidden units. The IDF-weighting was used 
as a weighting function. Hence the weighting 
function captures the importance of a word within 
the document (global context). In order to 
maximize the semantic similarity, the researchers 
made use of Wordnet (Miller, 1995) [23] and 
benchmarked with WordSim-353 (Finkelstein et 
al.,2001) [24]. The final result of this research 
outperformed the result from similar research by 
Mnih and Hinton (2008) [25], both duplicating on 
Wikipedia dataset or using the research's [25] 
original dataset of one year Reuters English 
newswire. 

Convolutional Neural Network was used 
for Sentence Classification by Kim (2014) [12]. 
The research used pre-trained word vectors; if a 
word were missing from pre-trained vectors, that 
word would be generated randomly. The research 
was a feature selection process over CNN. This 
research by Kim (2014) [12] was a duplicate of 
similar research by Razavian et al. [26] but used 
text datasets; in contrast, Razavian et al. [26] used 
imagery datasets for the experiment. Hence it was 
evidence that" feature extractors from pre-trained 
deep learning models perform well on a variety of 
tasks" [12]. The CNN model was borrowed from 
the work of Collobert et al. [27] with slight 
multichannel modification, two channels of word 
vectors: the first channel kept static throughout 
training, and the second one is fine-tuned via 
backpropagation. The datasets in word2vec 
embeddings (Mikolov et al.,2013) [21] came from 
Movie reviews (Pang and Lee, 2005) [28], Stanford 
Sentiment Treebank (Socher et al.,2013) [13], 
Subjectivity (Pang and Lee, 2004) [29], TREC 
question dataset (Li and Roth, 2002) [30], 
Costumer reviews (Hu and Liu, 2004) [31]. The 
final benchmarked outcomes suggested that pre-
trained word vectors are suitable. Thus,' universal' 
feature extractors can be utilized across datasets. 

Recursive Neural Tensor Network 
research by Socher et al. [13] introduced a model 
for predicting sentiments over treebanks; the main 
challenge of this research is that the sentiment 
must be predicted over compositional phrases. 
The dataset was taken from Stanford Sentiment 
Treebank. The basic concept of a treebank is that 
each phrase has been labeled in its compositional 
form. The main advantage of using the treebank 
over the bag-of-words approach is that a treebank 
does not ignore word order. The Stanford 
Sentiment Treebank uses movie reviews from 
rottentomatoes.com as the primary source and 
parses the data using The Standford Parser (Klein 
and Manning, 2003) [32], then had each comment 
labeled with a sentiment. The graphical form of 
Recursive Neural Models will parse n-gram inputs 
into a binary tree and computes in a bottom-up 



SYSTEMIC : Information System and Informatics Journal. (Vol 7 No 2 - Desember 2021)  36-41 

38 

fashion. RNTN by Socher et al. [13] was an 
improvement of the Recursive Neural Network by 
Socher et al. [33] and Matrix-Vector - RNN also by 
Socher et al. [34]. All of those approaches [13] [33] 
[34] used softmax; the main difference was the 
representation form of input phrases: RNN [33] 
used vector, MV-RNN [34] used vector-matrix, 
RNTN [13] used tensor. The fine-grained 
sentiments used were: very negative, negative, 
somewhat negative, neutral, somewhat positive, 
positive, and very positive. These sentiments were 
baselines for the sentiment of each phrase. There 
were some tests made to provide the assessment 
of RNTN model performances, and RNTN was 
benchmarked with other algorithms: MV-RNN, 
RNN, VecAvg2, Binary Na¨ıve Bayes, SVM, and 
Na¨ıve Bayes. RNTN outperformed those 
algorithms by up to 85.4 % for full-sentence binary 
classification. Contrastive conjunction sentences in 
the form' X but Y,' for example: "There are slow and 
repetitive parts. However, it has just enough spice 
to keep it interesting," for this type of dataset, 
RNTN obtains 41 % accuracy compared to MV-
RNN, RNN, and Binary Na¨ıve Bayes. RNTN also 
outperformed other algorithms on negated 
sentences: "I liked a single minute of this film" is a 
positive sentence, "I did not like a single minute of 
this film" is a negated positive sentence, "It is just 
incredibly dull," is a negative sentence, "It is 
definitely not dull" is a negated negative sentence, 
for those types of sentences RNTN captured better 
performances. The last test was on the most 
positive and negative phrases, such as: "one of the 
best films of the year" and "best worst special-
effects creation of the year," RNTN also resulted in 
better performances than RNN and MV-RNN. 

Tweet2vec by Vosoughi et al. (2016) [7] 
was an effort to capture a vector representation of 
tweets that can be used for any classification task. 
The method was CNN - LSTM encoder-decoder 
model, which operates at the character level to 
learn and then vectorize the representation of 
tweets. The dataset was taken from 3 million 
randomly selected English tweets. The input 
features from a tweet were 70 characters x 150 
matrices. The number 150 was taken from 140 
characters plus ten paddings. The 70 x 150 matrix 
input matrix was given to CNN - LSTM model. After 
passing through the encoder section, the output 
representation of a tweet will be a 256-sized 
vector. The encoded representation will be fed to 
the decoder section. The resulting decoded matrix 
representation will be the final result (no exact 
matrix size is mentioned in the paper). After 
semantic relatedness and sentiment classification 
tests compared to Paragraph2Vec by Mikolov and 
Le, 2014 [35], this research's result outperformed 
Paragraph2Vec. 

4. Deep Learning for Capturing 
Structure 

The structure of the Twitter user, which represent 
connectivity among them, could be significant for 
racism detection. In real life, species with high 
feature similarities tend to live and build 
communities. The feature learning research by Vu 
and Parker (2015) [3] introduced a distributed 
representation of nodes in social network analysis 
as node embeddings. The node embedding 
learning model was adapted from word2vec 
(Mikolov et al., 2013) [21]. The main aim of the 
research was to introduce a generic method for 
learning embeddings from nodes in a social 
network based on their connectivity and 
attributes. The three aspects of mining on social 
networks used in the research are : 
1. Community Homogeneity, the degree of 
closeness among its members 
2. Community Distance, the average total distance 
for all members 
3. Community Connectors Identification, 
identification of inter-community outliers who are 
not necessarily well-known but play significant 
roles in the social Network, also not influencers 
nor leaders 

The dataset was taken from DBLP 
September 2013 citation network compiled by 
aminer.org [36]. The training process used 24 
Na¨ıve Bayes classifiers over 24 fields of Computer 
Science, resulting in each field counts of members, 
authors, and papers (an author could be a member 
of a particular field community in Computer 
Science or not). The citation-based author 
embedding was a vector of 200 real numbers. 
There were two types of authors: the paper 
authors (citers) and the authors of citing papers 
(citees). Inbound citations can determine the 
homogeneity scores to a research community (IC) 
and outbound citations to a community outside 
(OOC). The research did provide the scores as a 
descriptive result. The last result of this research 
was determining community connectors, the 
authors who were considered outliers from the 
Data Mining community to the extent that they 
worked between two communities or that their 
work was related to multiple research fields. The 
paper stated those outliers sorted by their scores 
in descending order. 

Perrozi et al.'s (2014) [4] research aimed 
to label graph-based text datasets using a 
combination of SkipGram dan Hierarchical 
Softmax; the technique was called DeepWalk. The 
concept plays an essential role in this algorithm. 
The datasets being used were: BLOGCATALOG [37] 
for interest labeling, FLICKR [37] for group 
labeling, and YOUTUBE [38] for group labeling. 
The baseline methods for comparison were: 
SpectralClustering [39], Modularity [37], 
EdgeCluster [38], wvRN [40], and Majority. The 
final comparison is 10% - 90% BLOGCATALOG 
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training data and 1% - 10% FLICKR and YOUTUBE 
training data of the DeepWalk algorithm. This 
results in better performance than other baseline 
algorithms. 

Large-scale Information Network 
Embedding or abbreviated as LINE by Tang et al. 
(2015) [5], introduced the concepts of first-order 
proximity and second-order proximity and argued 
that the truncated random walk method as 
DeepWalk [4] only covered the second-order 
proximity. LINE aimed to introduce a large-scale 
network embedding model that preserves first- 
and second-order proximity. The LINE model was 
tested using three types of network domain 
corpora; the first came from the language domain 
and was an entire set of English WIKIPEDIA pages. 
The second domain came from Social Networks. 
There were two datasets, FLICKR and YOUTUBE 
[41]. The third domain came from the citation 
network, and the DBLP dataset [36] was used. 
Baseline methods for comparison were: Graph 
factorization [42], DeepWalk [4], and variations of 
LINE algorithms. The result for the language 
network domain was evaluated using two 
applications, word analogy [21] and document 
classification. On the first application, LINE with 
second-order proximity optimization 
outperformed all algorithms. 

In contrast, with the second application, 
the concatenation of first-order proximity + 
second-order proximity outperformed all 
algorithms. The result for the social network 
domain was quite similar. The concatenation of 
first-order proximity + second-order proximity 
outperformed all algorithms; hence it can be 
concluded that the approach was quite effective 
and efficient for Network embedding regardless of 
the sparsity of the Network. The result for the 
citation network domain was slightly different. 
since the experiment only involved a directed 
graph, only second-order proximity was involved. 
The baseline method for comparison only involved 
DeepWalk [4], and the final result was that the 
second-order proximity outperformed DeepWalk 
both on the Author-Citation Network and Paper-
Citation network. 

Node2vec by Grover and Leskovec (2016) 
[8] can learn continuous feature representation for 
nodes. The research argues that classic 
approaches such as Principal Component Analysis, 
Multi-Dimensional Scaling, and those descendants 
[43] [44] [45] [46] are computationally expensive 
for large-world networks. The objective of 
node2vec is to preserve the neighborhood of 
nodes based on word2vec (Mikolov et al.,2013) 
representation. That objective was achieved using 
stochastic gradient-descent backpropagation on a 
single hidden-layer feed-forward neural Network. 
The performances were evaluated against Spectral 
Clustering [39], DeepWalk [4], and LINE [5], and 
there were increasing AUC scores results over 
Facebook, PPI, and arXiv datasets. 

5. Tweets Detection for Capturing 
Time 

Guille and Favre's (2014) [47] research 
incorporates time attributes for Twitter event 
detection. The research used two corpora: English 
and French. The text preprocessing only included 
removing trivial words and the stop-words. The 
input was partitions of n time-sliced tweets. The 
output was a list of events with the k-highest 
magnitudes. The approach was capturing bursty 
words' magnitude during a particular time and 
detecting special occurred events in the real world 
from those times. The event detection technique 
used graph approaches topic graph and 
redundancy graph for merging duplicated-
redundant events. Then the actual real-world 
events were supervised by two annotators. The 
primary contribution of this research to the field 
of Twitter analytics was the capability to filter out 
non-related tweets for particular events. 
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