Total Vertex Irregularity Strength of Disjoint Union of Ladder Rung Graph and Disjoint Union of Domino Graph

  • Nugroho Arif Sudibyo Universitas Duta Bangsa
  • Ardymulya Iswardani Universitas Duta Bangsa
  • Yohana Putra Surya Rahmad Hidayat SMK Negeri 2 Kudus
Keywords: Graph; tvs; Ladder rung; Domino

Abstract

We investigate a graph labeling called the total vertex irregularity strength (tvs(G)). A tvs(G) is minimum for which graph has a vertex irregular total -labeling. In this paper, we determine the total vertex irregularity strength of disjoint union of ladder rung graph and disjoint union of domino graph.

 

Downloads

Download data is not yet available.

Author Biography

Nugroho Arif Sudibyo, Universitas Duta Bangsa

 

 

References

N. A. Sudibyo and S. Komsatun, “Pelabelan total tak reguler pada graf barbel,” J. Math. Math. Educ., vol. 8, no. 1, pp. 16–19, 2018.

J. A. Gallian, “A dynamic survey of graph labeling,” Electron. J. Comb., vol. 1, no. DynamicSurveys, 2018.

M. Marsidi and I. H. Agustin, “The local antimagic on disjoint union of some family graphs,” J. Mat. “MANTIK,” vol. 5, no. 2, pp. 69–75, 2019, doi: 10.15642/mantik.2019.5.2.69-75.

N. A. Sudibyo and S. Komsatun, “Pelabelan total tak reguler pada beberapa graf,” J. Ilm. Mat. dan Pendidik. Mat., vol. 10, no. 2, pp. 9–16, 2018.

Slamin, Dafik, and W. Winnona, “Total Vertex Irregularity Strength of the Disjoint Union of Sun Graphs,” Int. J. Comb., vol. 2012, pp. 1–9, 2012, doi: 10.1155/2012/284383.

D. Indriati, Widodo, I. E. Wijayanti, K. A. Sugeng, M. Bača, and A. Semaničová-Feňovčíková, “The total vertex irregularity strength of generalized helm graphs and prisms with outer pendant edges,” Australas. J. Comb., vol. 65, no. 1, pp. 14–26, 2016.

M. Bača, S. Jendrol’, M. Miller, and J. Ryan, “On irregular total labellings,” Discrete Math., vol. 307, no. 11–12, pp. 1378–1388, 2007, doi: 10.1016/j.disc.2005.11.075.

Nurdin, E. T. Baskoro, A. N. M. Salman, and N. N. Gaos, “On the total vertex irregularity strength of trees,” Discrete Math., vol. 310, no. 21, pp. 3043–3048, 2010, doi: 10.1016/j.disc.2010.06.041.

I. K. Dewi, D. Indriati, and T. A. Kusmayadi, “On the total vertex irregularity strength of Cn ∗2 Kn graph,” J. Phys. Conf. Ser., vol. 1211, no. 1, pp. 2–7, 2019, doi: 10.1088/1742-6596/1211/1/012008.

R. Ramdani, A. N. M. Salman, and H. Assiyatun, “On the total irregularity strength of regular graphs,” J. Math. Fundam. Sci., vol. 47, no. 3, pp. 281–295, 2015, doi: 10.5614/j.math.fund.sci.2015.47.3.6.

M. Anholcer, M. Karoński, and F. Pfender, “Total Vertex Irregularity Strength of Forests,” no. 1, pp. 1–15, 2011.

A. Ahmad, K.M. Awan, I. Javaid, and Slamin, “Total vertex irregularity strength of Wheel Related Graphs ∗,” Australas. J. Comb., vol. 51, pp. 147–156, 2011.

R. Ramdani, A. N. M. Salman, and H. Assiyatun, “On the total edge and vertex irregularity strength of some graphs obtained from star,” vol. 25, no. 3, pp. 314–324, 2019.

Susilawati, E. T. Baskoro, and R. Simanjuntak, “Total vertex irregularity strength of trees with maximum degree five,” Electron. J. Graph Theory Appl., vol. 6, no. 2, pp. 250–257, 2018, doi: 10.5614/ejgta.2018.6.2.5.

R. Ramdani, “On the total vertex irregularity strength of comb product of two cycles and two stars,” Indones. J. Comb., vol. 3, no. 2, p. 79, 2020, doi: 10.19184/ijc.2019.3.2.2.

E. W. Weisstein, “Domino Graph.” [Online]. Available: http://mathworld.wolfram.com/DominoGraph.html.

CROSSMARK
Published
2020-06-01
DIMENSIONS
How to Cite
SudibyoN. A., IswardaniA., & HidayatY. P. S. R. (2020). Total Vertex Irregularity Strength of Disjoint Union of Ladder Rung Graph and Disjoint Union of Domino Graph. Jurnal Matematika MANTIK, 6(1), 47-51. https://doi.org/10.15642/mantik.2020.6.1.47-51