Klasifikasi Menggunakan Metode Hybrid Bayessian-Neural Network (Studi Kasus: Identifikasi Virus Komputer)

  • Dian C Rini UIN Sunan Ampel Surabaya
  • Yuniar Farida UIN Sunan Ampel Surabaya
  • Dwi Puspitasari Politeknik Negeri Malang
Keywords: Virus Komputer, Naïve Bayes Classifier, Neural Network, Perceptron

Abstract

Virus komputer merupakan suatu program yang menginfeksi komputer terutama pada saat komputer sedang beroperasi dan menjadi momok bagi pengguna komputer. Virus komputer dapat menggandakan dirinya sendiri dan menyebar dengan cara menyisipkan dirinya pada program dan data lainnya. Efek negatif virus komputer adalah memperbanyak dirinya sendiri, yang membuat sumber daya pada komputer terutama penggunaan memori menjadi berkurang secara signifikan. Diperlukan suatu penangkal atau antivirus dalam mencegah penyebaran yang lebih jauh dalam sistem komputer. Pada penelitian ini, dilakukan suatu identifikasi virus dengan menggabungkan dua metode yaitu Naïve Bayes Classifier dengan Neural Network. Fitur virus didapatkan dari mengkodekan ciri-ciri dari virus. Untuk klasifikasi awal digunakan metode Naïve Bayes Classifier untuk membagi dua jenis fitur, yaitu virus dan bukan virus. Setelah masuk kedalam jenis virus, maka diklasifikasikan kedalam dua jenis virus yaitu trojan atau worm menggunakan salah satu metode neural network (perceptron). Hasil sistem setelah dilakukan uji coba didapatkan recognition rate tertinggi yaitu sebesar 94.12%.

Downloads

Download data is not yet available.
CROSSMARK
Published
2016-05-30
DIMENSIONS
How to Cite
RiniD. C., FaridaY., & PuspitasariD. (2016). Klasifikasi Menggunakan Metode Hybrid Bayessian-Neural Network (Studi Kasus: Identifikasi Virus Komputer). Jurnal Matematika MANTIK, 1(2), 38-43. Retrieved from http://jurnalsaintek.uinsby.ac.id/index.php/mantik/article/view/60