Classification of EEG Signals using Fast Fourier Transform (FFT) and Adaptive Neuro Fuzzy Inference System (ANFIS)

  • Suwanto Suwanto UIN Sunan Ampel Surabaya
  • M. Hasan Bisri UIN Sunan Ampel Surabaya
  • Dian Candra Rini Novitasari UIN Sunan Ampel Surabaya
  • Ahmad Hanif Asyhar UIN Sunan Ampel Surabaya
Keywords: Epilepsy; EEG; Feature Extraction; Classification

Abstract

Epilepsy is a disease that attacks the brain and results in seizures due to neurological disorders. The electrical activity of the brain recorded by the EEG signal test, because EEG test can be used to diagnose brain and mental diseases such as epilepsy. This study aims to identify whether a person has epilepsy or not along with the result of accurate, sensitivity, and precision rate using Fast Fourier Transform (FFT) and Adaptive Neuro-Fuzzy Inference System (ANFIS) method. The FFT is used to transform EEG signals from time-based into frequency-based and continued with feature extraction to take characteristics from each filtering signal using the median, mean, and standard deviations of each EEG signal. The results of the feature extraction used for input on the category process based on characteristics data (classification) using ANFIS. EEG signal data is obtained from epilepsy center online database of Bonn University, German. The results of the EEG signal classification system using ANFIS with two classes (Normal-Epilepsy) states accuracy, sensitivity, and precision of 100%. The classification systems with three class division (Normal-Not Seizure Epilepsy-Epilepsy) resulted in an accuracy of 89.33% sensitivity of 89.37% and precision of 89.33%.

Downloads

Download data is not yet available.

References

N. C. W. Maryanti, "Epilepsi dan Budaya," Buletin Psikologi, vol. 24, no. 1, pp. 22-31, 2016.

W. E. Zulianto, E. C. Djamal and A. Komarudin, "Deteksi Epilepsi dari Sinyal EEG Menggunakan Autoregresive dan Adaptive Backpropagation," Prosiding SNST, 2016.

D. C. R. Novitasari, "Klasifikasi Sinyal EEG Menggunakan Metode Fuzzy C-Means Clustering (FCM) dan Adpative Neuro Fuzzy Inference System (ANFIS)," ITS, 2013.

D. C. R. Novitasari, "Klasifikasi Sinyal EEG menggunakan Fuzzy C-Means Clusterimg (FCM) dan Adaptive Neighborhood Modified Backpropagation (ANMBP)," Jurnal Mantik.

K. Sameh, P. Kovacs and M. Gabbouj, "Epileptic Seizure Classification of EEG time-series using Rational Discrete Short Time Fourier Transform," IEEE, 2013.

B. Pushpa and D. Najumnissa, "Classification of Epileptic Seizure EEG signals using EMD and ANFIS," IEEE, 2014.

A. Surtono, T. T. Widodo and M. Tjokronagoro, "Analisis Klasifikasi Sinyal EKG Berbasis Wavelet dan Jaringan Syaraf Tiruan," JNTETI, pp. 60-66, 2012.

N. Afifah, A. Rizal and I. Wijayanto, "Klasifikasi Penyakit Batuk Berdasarkan Sinyal Data Suara Menggunakan Ekstraksi Ciri Fast Fourier Transform dan Power Spectral Density dengan Algoritma Jaringan Saraf Tiruan-Propagasi Balik," e-Prociding of Enginering, vol. 2, pp. 2841-2846, 2015.

Faradiba, "Pengenalan Pola Sinyal Suara Manusia Menggunakan Metode Back Propagation Neural Network," Jurnal EduMatSains, vol. 2, 20017.

N. Purwaningsih, "Penerapan Multilayer Perceptron untuk Klasifikasi Jenis Kulit Sapi Tersamak," Jurnal TEKNOIF, vol. 4, 2016.

R. D. Nompunu, P. B. Santosa and E. Yudaningtyas, "Klasifikasi Kinerja Pegawai Universitas X dengan pendekatan Neuro-Fuzzy," EECCIS, vol. 12, pp. 47-53, 2018.

S. M. B, "Pembuatan Aplikasi Penerima Data EEG 3 Kanal," 2014.

B. Samudra, "Support Vector Machine for Epileptic Seizures Detection Based on EEG Signal," 2018.

N. B. Aji, "Klasifikasi EEG Epilepsi Menggunakan Singular Spectrum Analysis, Power Spectral Density dan Convolution Neural Network," 2017.

I. G. Harsemadi, "Implementasi Fast Fourier Transform pada Ekstraksi Fitur Mood dalam Musik," Prosiding seminar Nasional Multidisiplin Ilmu Universitas Budi Luhur, pp. 121-129, 2017.

P. N. Hanggarsari, H. Fitriawan and Y. Yuniati, "Simulasi Sistem Pengacakan Sinyal Suara secara Realtime Berbasis Fast Fourier transform (FFT)," ELECTRICAL Jurnal Rekayasa dan Teknologi Elektro, vol. 6, pp. 192-198, 2012.

S. Kinasih, "Prediksi Curah Hujan Menggunakan Adaptive Neuro Fuzzy Inference System (ANFIS)," 2018.

D. A. Adyanti, A. H. Asyhar, D. C. R. Novitasari, A. Lubab and M. Hafiyusholeh, "Forecasts Marine Weather On Java Sea Using Hybrid Methods: TS-ANFIS," EECSI, 2017.

J.-S. R. Jang, "ANFIS: Adaptive-Network-Based Fuzzy Inference System," IEEE, pp. 665-685, 1993.

F. Tempola, M. Muhammad and A. Khairan, "Perbandingan Klasifikasi Antara KNN dan Naive Bayes pada Penentuan Status gunung Berapi dengan K-Fold Cross Validation," Jurnal Teknologi Informasi dan Komunikasi (JTIIK), vol. V, no. 5, pp. 577-584, 2018.

R. Anand, V. P. S. Kirar and K. Burse, "K-Fold Cross Validation and Classification Accuracy of PIMA Indian Diabetes Data Set Using Higher Order Neural Network and PCA," International Journal of Soft Computing and Enginering (IJSCE), vol. 2, no. 6, pp. 436-438, 2013.

I. Haimi, "Peramalan Beban Listrik Jangka Pendek dengan Menggunakan Metode Adaptive Neuro Fuzzy Inference System (ANFIS)," UIN Sultan Syarif Kasim Riau, Pekanbaru, 2010.

Published
2019-05-31
How to Cite
Suwanto, S., Bisri, M., Novitasari, D., & Asyhar, A. (2019). Classification of EEG Signals using Fast Fourier Transform (FFT) and Adaptive Neuro Fuzzy Inference System (ANFIS). Jurnal Matematika MANTIK, 5(1), 35-44. https://doi.org/10.15642/mantik.2019.5.1.35-44
Section
Articles