Analisis Faktor-Faktor yang Mempengaruhi Jumlah Kematian Ibu dan Bayi di Provinsi Jawa Tengah Menggunakan Regresi Bivariat Poisson

  • Mutiara Widhika Astuti Universitas Negeri Surabaya
  • A’yunin Sofro Universitas Negeri Surabaya
Keywords: Maternal Death, Infant Death, PBR

Abstract

Maternal and infant mortality are two correlated subjects, because during pregnancy the mother's placenta distributes nutrients to the fetus so the baby born is affected by the condition of his mother. Central Java has significant maternal and neonatal mortality rates in Indonesia. In this case, need a research to analyze the factors that influence maternal and infant mortality using Bivariate Poisson Regression (BPR) method. BPR is the right method because it can reconfirm two data that are correlated with Poisson distribution. This study produced three models. The first model is the maternal mortality rate has several significant factors, including pregnant women implementing the K1 and K4 program, vitamin A to postpartum mothers, pregnant women getting Fe tablets, and midwifery handle complications. The second model is the infant deaths that have factors pregnant women implementing the K4 program, helped assistance by medical team, postpartum mothers receiving vitamin A, pregnant women getting Fe tablets, complications handled by midwifery, and KB participants. The final model involves maternal and infant mortality. Significant factors are pregnant women implementing the K1 program, pregnant women implementing the K4 program, giving vitamin A to postpartum mothers, and KB participants.

Downloads

Download data is not yet available.

References

Agresti, Categorical Data Analysis. New York: John Wiley & Sons, Inc. 1990

Badan Perencanaan Pembangunan Nasional. Laporan Pencapaian Tujuan Pembangunan Milenium di Indonesia. Jakarta. 2012.

Dinas Kesehatan Provinsi Jawa Tengah, Profil Kesehatan Provinsi Jawa Tengah 2016. Semarang. 2016.

Hosmer, D. W & Lemeshow, S., Applied Logistic Regression. New Jersey: John Wiley & Sons, Inc. 2000.

Karlis, D., & Ntzoufras, I., Bivariate Poisson and Diagonal Inflated Bivariate Poisson Regression Models in R. Journal of Statistical Software. 2005.

Kawamura, Kazutomo, The structure of bivariate Poisson distribution. Kodai Math. Sem. Rep. 25 (1973), no. 2, 246--256. doi:10.2996/kmj/1138846776.

Rachmah, Nina F, Pemodelan Jumlah Kematian Ibu dan Jumlah Kematian Bayi di Provinsi Jawa Timur Menggunakan Bivariate Poisson Regression. Surabaya: ITS Surabaya. 2014.

The World Health Report, World Health Organization. WHO: Geneva. 2004.

Walpole, RE & Myers, Ilmu Peluang dan Statistika untuk Insinyur dan Ilmuwan. Bandung: ITB Bandung. 1995.

Kahar, Arifin M, Analisis Angka Harapan Lama Sekolah di Indonesia Timur Menggunakan Weighted Least Squares Regression, Jurnal Matematika MANTIK, vol. 4, no. 1, hal. 32-41, May 2018.

Kusumaningtyas, S. Angka Kematian Ibu dan Bayi di Indonesia Tinggi, Riset Ungkap Sebabnya. Diakses pada tanggal, 12 Juni 2018 melalui, https://sains.kompas.com/read/2018/03/28/203300723/angka-kematian-ibu-dan-bayi-di-indonesia-tinggi-riset-ungkap-sebabnya.

Published
2018-10-31
How to Cite
Astuti, M., & Sofro, A. (2018). Analisis Faktor-Faktor yang Mempengaruhi Jumlah Kematian Ibu dan Bayi di Provinsi Jawa Tengah Menggunakan Regresi Bivariat Poisson. Jurnal Matematika "MANTIK", 4(2), 110-115. https://doi.org/10.15642/mantik.2018.4.2.110-115
Section
Articles