Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network

  • Mertha Endah Ervina Universitas Padjadjaran
  • Rini Silvi Universitas Padjadjaran
  • Intaniah Ratna Nur Wisisono Universitas Padjadjaran
Keywords: Resilient Back-propagation (Rprop), Peramalan, Penumpang Kereta Api, nnfor

Abstract

Train scheduling affects the level of customer satisfaction and profitability of the train service provider. The prediction method of Back-propagation Neural Network (BPNN) has relatively slow convergence. Therefore, this study uses Resilient Back-propagation (Rprop) because it has a more fast convergence and high accuracy. The model produced is a model for Jabodetabek, Java (non-Jabodetabek), Sumatra, and Indonesia. From the results of data analysis conducted, it can be concluded that the performance of neural network model with Resilient Back-propagation (Rprop) formed from training data gives very accurate prediction accuracy level with mean absolute percentage error (MAPE) less than 10% for each model. Then forecasting for the next 12 months conducted and the results compared with the data testing, Rprop provides a very high forecasting accuracy with MAPE value below 10%. The MAPE value for each forecasting the number of rail passengers is 7.50% for Jabodetabek, 5.89% for Java (non-Jabodetabek), 5.36% for Sumatra and 4.80% for Indonesia. That is, four neural network architectures with Rprop can be used for this case with very accurate forecasting results.

Downloads

Download data is not yet available.

References

Y.-C. (Rex) Lai dan C. P. L. Barkan, “Enhanced Parametric Railway Capacity Evaluation Tool,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2117, no. 1, hlm. 33–40, Jan 2009.

C.-S. Chen dan S.-L. Su, “Resilient Back-propagation Neural Network for Approximation 2-D GDOP,” dipresentasikan pada IMECS 2010, Hong Kong, 2010, vol. 2.

E. R. Zulvima, “Visualisasi dari Klasterisasi dan Peramalan Kualitas Udara Kota Surabaya Menggunakan Metode Klasterisasi K-Means dan Peramalan Artificial Neural Network,” Skripsi, Institut Teknologi Sepuluh Nopember, Surabaya, 2017.

Suyanto, Data Mining untuk Klasifikasi dan Klasterisasi Data. INFORMATIKA, 2017.

D. Anderson dan G. McNeill, “Artificial Neural Networks Technology,” Kaman Sciences Corporation, New York, A DACS State-of-the-Art Report, Agu 1992.

wikipedia, “Rprop,” Wikipedia, 2016. [Daring]. Tersedia pada: https://en.wikipedia.org/wiki/Rprop.

J. McCaffrey, “How to Use Resilient Back Propagation to Train Neural Networks,” Visual Studio Magazine, 09-Mar-2015. [Daring]. Tersedia pada: https://visualstudiomagazine.com/Articles/2015/03/01/Resilient-Back-Propagation.aspx?

N. Susanto, “Pengembangan Model Jaringan Syaraf Tiruan Resilient Backpropagation untuk Identifikasi Pembicara dengan Praproses MFCC,” Skripsi, Institut Pertanian Bogor, Bogor, 2007.

L. Fausett, Fundamentals of Neural Network: Architectures, Algorithms, and Application. New Jersey: Prentice Hall, 1994.

S. S. Haykin, Neural Networks: A Comprehensive Foundation, 2 ed. New Jersey: Prentice Hall, 1999.

J. J. M. Moreno, A. P. Pol, A. S. Abad, dan B. C. Blasco, “Using the R-MAPE index as a resistant measure of forecast accuracy,” Psicothema, vol. 25, no. 4, hlm. 500–506, Nov 2013.

Amrin, “Peramalan Tingkat Inflasi Indonesia Menggunakan Neural Network Backpropagation Berbasis Metode Time Series,” Jurnal Techno Nusa Mandiri, vol. 11, no. 2, hlm. 129–136, 2014.

M. Fajar, “Peramalan Produksi Cabai Rawit dengan Neural Network,” 2017.

S. Fritsch, F. Guenther, M. Suling, dan S. M. Mueller, Package ‘neuralnet.’ 2016.

G. A. Saputro dan M. Asri, Anggaran Perusahaan, 3 ed. Yogyakarta: BPFE, 2000.

J. Heizer dan B. Render, Manajemen Operasi Buku 1, 9 ed. Jakarta: Salemba Empat, 2009.

B. Karlik dan A. V. Olgac, “Performance Analysis of Various Activation Functions in Generalized MLP Architectures of Neural Networks,” International Journal of Artificial Intelligence And Expert Systems (IJAE), vol. 1, no. 4, hlm. 111–122, 2011.

N. Kourentzes, Package ‘nnfor.’ 2017.

W. S. McCulloch dan W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” Bulletin of Mathematical Biophysics, vol. 5, no. 4, hlm. 115–133, Des 1943.

M. A. Razak dan E. Riksakomara, “Peramalan Jumlah Produksi Ikan dengan Menggunakan Backpropagation Neural Network (Studi Kasus: UPTD Pelabuhan Perikanan Banjarmasin),” JURNAL TEKNIK ITS, vol. 6, no. 1, hlm. 142–148, 2017.

W. Saputra, Tulus, M. Zarlis, R. W. Sembiring, dan D. Hartama, “Analysis Resilient Algorithm on Artificial Neural Network Backpropagation,” dalam Journal of Physics: Conference Series, 2017, vol. 930, hlm. 012035.

Published
2018-10-31
How to Cite
Ervina, M., Silvi, R., & Wisisono, I. (2018). Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network. Jurnal Matematika "MANTIK", 4(2), 90-99. https://doi.org/10.15642/mantik.2018.4.2.90-99
Section
Articles