Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia

  • Rini Silvi Universitas Padjadjaran
Keywords: Clustering, Centroid Linkage, K-means

Abstract

Cluster analysis is a method to group data (objects) or observations based on their similarities. Objects that become members of a group have similarities among them. Cluster analyses used in this research are K-means clustering and Centroid Linkage clustering. K-means clustering, which falls under non-hierarchical cluster analysis, is a simple and easy to implement method. On the other hand, Centroid Linkage clustering, which belongs to hierarchical cluster analysis, is useful in handling outliers by preventing them skewing the cluster analysis. To keep it simple, outliers are often removed even though outliers often contain important information. HIV/AIDS is a serious challenge for global public health since HIV/AIDS is an infectious disease attacking body’s immune system that in turn lowering the ability to fight infections which in the end causing death. HIV/AIDS indicators data in Indonesia contain outliers. This research uses gap statistic to define the number of clusters based on HIV/AIDS indicators that groups Indonesia provinces into 7 clusters. By comparing S­w­/S­b ratio, Centroid Linkage clustering is more homogenous than K-means clustering. Using clustering, the government shall be able to create a better policy for fighting HIV/AIDS based on the dominant indicators in each cluster.

Downloads

Download data is not yet available.

References

Kementerian Kesehatan RI, Survei Terpadu Biologis dan Perilaku, Jakarta: Kementerian Kesehatan, (2011)

Kementerian Kesehatan RI, Profil Kesehatan Indonesia Tahun 2016, Jakarta: Kementerian Kesehatan RI, (2017)

Mondal, M., & Shitan, M., Factors Affecting The HIV/AIDS Epidemic: An Ecological Analysis Of Global Data, African Health Sciences, 13(2) pp 301–310, (2013)

Singh, R. K., & Patra, S., What Factors Are Responsible For Higher Prevalence Of HIV Infection Among Urban Women Than Rural Women In Tanzania?, Ethiopian Journal of Health Sciences, 25(4), pp 321–328, (2015)

Rahmawati, L., Analisis Kelompok Dengan Menggunakan Metode Hierarki Untuk Pengelompokan Kabupaten/Kota Di Jawa Timur Berdasar Indikator Kesehatan, Jurnal Matematika Vol.1 No.2 Universitas Negeri Malang, (2012)

Anderberg, M., Cluster Analysis For Applications, Academic Press.Inc., (1973)

Ningrat, D.R., Analisis Cluster Dengan Algoritma K-Means dan Fuzzy C-Means Clustering Untuk Pengelompokan Data Obligasi Korporasi, Jurnal Gaussian Vol.5 No.4 Universitas Diponegoro, 2016.

Badan Pusat Statistik (BPS), Indikator Pembangunan Berkelanjutan 2017: Jumlah Penduduk Miskin, (2017)

Badan Pusat Statistik (BPS), Statistik Indonesia 2017: Tingkat Pengangguran Terbuka, (2017)

Badan Pusat Statistik (BPS), Statistik Indonesia 2017: Jumlah Puskesmas, (2017)

Badan Pusat Statistik (BPS), Statistik Kesejahteraan Rakyat 2017: Status Pendidikan Tertinggi, (2017)

Puspitasari, M., Pengelompokan Kabupaten / Kota Berdasarkan Faktor-Faktor Yang Mempengaruhi Kemiskinan Di Jawa Tengah Menggunakan Metode Ward Dan Average Linkage, Jurnal Matematika Vol. 5 No. 6 Universitas Negeri Yogyakarta, (2016)

Tibshirani, R., Walther, G., & Hastie, T., Estimating The Number Of Clusters In A Data Set Via The Gap Statistic, Journal of Royal Statistical Society Vol. 63 Issue 2., (2001)

Laeli, S., Analisis Cluster Dengan Average Linkage Method Dan Ward’s Method Untuk Data Responden Nasabah Asuransi Jiwa Unit Link, S1 Thesis, Universitas Negeri Yogyakarta, Indonesia, (2014)

Purnamasari, S. B., Pemilihan Cluster Optimum Pada Fuzzy C-Means (Studi Kasus: Pengelompokan Kabupaten/Kota di Jawa Tengah berdasarkan Indikator Indeks Pembangunan Manusia), Jurnal Gaussian Vol.3 No.3 Universitas Diponegoro, (2014)

Lailiyah, S. dan Hafiyusholeh, M., Perbandingan antara Metode K-Means Clustering dengan Gath-Geva Clustering, Jurnal Matematika MANTIK, 1(2), Mei 2016. pp. 26-37

Published
2018-05-11
How to Cite
Silvi, R. (2018). Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia. Jurnal Matematika "MANTIK", 4(1), 22-31. https://doi.org/10.15642/mantik.2018.4.1.22-31
Section
Articles

Most read articles by the same author(s)