Penerapan Non-Linier Support Vector Machine pada Penggunaan Alat Kontrasepsi di Provinsi Maluku Utara

  • Muhamad Budiman Johra Universitas Padjajaran, Bandung
Keywords: Nonlinier Support Vector Contraceptive; Kernel Trick; Apparent Error Rate


The objective of BKKBN is to reduce the rate of population growth because the high population growth rate causes a high population quantity as well. According to the Departemen Kesehatan RI (2013), married women aged 15-49 years who are not use contraseption mostly in eastern Indonesia, one of them is Provinsi Maluku Utara. According to BKKBN Provinsi Maluku Utara, the birth rate increased from 57.4 to 57.9. This happens because many KB participants are drop out, contraceptive failure and side effects, the need for family planning is served 9.1 in 2007 to 8.5 in 2012 with a target of 5 in 2014. Therefore, it important to know determinant factors that affect women to use contraceptives. There are several methods in the classification, one of which is the Support Vector Machine (SVM). SVM has advantages over other classification methods because the Support Vector Machine not only minimizes errors in the trainset, but also has a high generalization capability. This is reflected in maximal margin selection. This study shows the Support Vector Machine can describe the decision of women to use contraception or not. The best kernel in this study is a radial base kernel with cost 1 and gamma 0.14286.


Download data is not yet available.


Tobing, M., Kolibu, F., Rumayar, A., Hubungan Antara Faktor-Faktor Yang Mempengaruhi Penggunaan KB di Wilayah Kerja Puskesmas Kapitu Kecamatan Amurang Barat, Jurnal Ilmiah Farmasi UNSRAT Vol.4 No 4 (2015)

Departemen Kesehatan RI. Buletin Jendela Data dan Informasi Kesehatan. Departemen Kesehatan RI (2013)

Kusumaningrum, R., Skripsi, Hubungan Antara Faktor-Faktor Yang Mempengaruhi Pemilihan Jenis Kontrasepsi Yang Digunakan Pada Pasangan Usia Subur, Universitas Diponogoro, Indonesia, 2009

Lucas, D., Mc Donald, P., Young, E., Pengantar Kependudukan, Gajah Mada University Press (1990)

Boser, B. E., Guyon, I. M., Vapnik, V. N., A Training Algorithm For Optimal Margin Classifiers. Proceedings of the fifth annual workshop on Computational Learning Theory – COLT’92.p.144

N. Mussafi, “Analisis Risk Asset Portfolio Berbasis Reward To Variability Pada Saham Syariah Di Indonesia Menggunakan Nonlinear Programming”, mantik, vol. 3, no. 2, pp. 57-64, Oct. 2017.

How to Cite
JohraM. B. (2018). Penerapan Non-Linier Support Vector Machine pada Penggunaan Alat Kontrasepsi di Provinsi Maluku Utara. Jurnal Matematika "MANTIK", 4(2), 137-142.