Pemodelan Matematika Perpindahan Panas Konveksi Campuran (Mixed Convection) pada Pelat Horizontal

  • Leli Deswita Universitas Riau, Pekanbaru
Keywords: Finite difference sheme; Mixed convection and horizontal plate


This study examines and analyzes mathematical model of mixed convection in horizontal plate. The heat transfer uses the model of a two dimensional nonlinear partial differential equations system. Then, this equation is derived first into the dimensionless equation form, and then it is changed into system of nonlinear ordinary differential equations form using similarity transformation. This system of nonlinear ordinary differential equations is solved by using the finite-difference scheme method, also with the mathematics program with software Matlab. The results obtained form this program is to determine skin friction coefficient , wall temperature velocity profiles and temperature profiles


Download data is not yet available.


[1] Cebeci, T. & Brandshaw, P. 1988. Physical and Computation Aspects of Convective Heat Transfer. New York: Springer-Verlag.
[2] Chellappa, AK. P. Singh. 1989. Possible simi-larity formulations for laminar free convection on a semi-infinite horizontal plate, Int. J. Engng. Scei. 27: 161-167.
[3] Deswita, L., Nazar. R., Ishak. A., Ahmad. R. & Pop. I. 2010. Similarity solution for mixed convection boundary layer flow over a permeable horizontal flat plate. Applied Mathematics and Computation 217: 2619-2630.
[4] Deswita. L., Nazar. R., Ahmad. R. Ishak. A. & Pop. I. 2009. Similary solution of free convection boundary layer flow on a horizontal plate with variable wall tempe-rature. European Journal of Scien tific Research ISSN 1450-216X Vol. 2: 188-1985.
[5] Fadzilah M. Ali, RoslindaNazar, Norihan M. Arifin & Ioan Pop. 2014. Mixed con-vection stagnation-point flow on a vertical stretching sheetwith external magnetic field. Applied Mathematics & Mechanics-English Edition 35(2): 155-166.
[6] Fernandez-Feria, R., Ortega-Casanova, J. 2014. A pseudospectral based method of lines for solving integro differential boundary layer equations. Application to the mixed con-vection over a heated horizontal plate, Applied Mathematics and computation. 242, pages 388-396
[7] Fernandez-Feria, Del Pino, C and Fernande-Gutiérrez , A., View Affiliations. Separation in the mixed convection boundary layer radial flow over a constanta temperature horizontal plate, Physics of Fluids 26, 103603.
[8] Ghebart, B., Jaluria, Y., Mahajan, R.L, Sammakia, B. Buoyancy Induced Flows and Transport, Hemisphere, New York, 1988.
[9] Hansen, A.G. Similarity Analyses of Boundary Value Problems in Engineering, Prentice Hal Inc, New Jersey,1964.
[10] Kartini Ahmad, RoslindaNazar & Ioan Pop. 2012. Mixed convection in laminar film flow of a micropolar fluid. Interna-tional Communi- cations in Heat and Mass Transfer 39(1): 36-39.
[11] Keller, H.B. 1970. A new differenc scheme for parabolic promlems. Dalam: Bramble, J Numerical Soluctions of Partical Defferen-tial Equations. New York. Achademic
[12] Rajesh Sharma, Anuar Ishak, Roslinda Nazar & Ioan Pop. 2014. Boundary layer flow & heat transfer over a permeable exponentially shrinking sheet in the presence of thermal radiation and partial slip. Journal of Applied Fluid Mech. 7(1): 125-134.
[13]Rashad, A. M., Chamkha, A. J, Modather. 2013. Mixed convection boundary-Layer flow past a horizontal circular cylinder embedded in a poros medium filled with ananofluid under convective boundary condition. November volume 86, Pages 380-388.
[14] Stewartson, K. 1958. on free convection from a horizontal plate, J. App. Math. Phys. (ZAMP) 276-281.
[15]Tham L, Nazar R, Pop I. 2013. Mixed convection boundary layer flow past a horizontal circular cylinder embedded in a porous Medium saturated by a nano-fluid: Brinkman model. J Porous Med 16: 445–457
[16] Tham L, Nazar R, 2014. Mixed convec-ion flow about a solid sphere embedded in a porous medium filled with a nano-fluid. Sains Malaysia 41: 1643-1649