Regional Economic Growth: A Spatial Durbin Model Approach

Authors

  • Abdul Karim Universitas Islam Negeri Walisongo, Semarang, Indonesia

DOI:

https://doi.org/10.15642/mantik.2021.7.2.147-154

Keywords:

Spatial Durbin Model, Spatial Autoregressive Model, Spatial Modeling, Spatial Autocorrelation, Economy Growth

Abstract

The purpose of this study is to determine the effect of spatial dependence on Gross Regional Domestic Product (GRDP) in Central Java Province. Spatial Durbin Model (SDM) is a regression model consisting of a spatial data structure which is the development of the Spatial Autoregressive Model (SAR). There is an additional spatial effect on the component of the independent variable that is not included in the SAR model or commonly referred to as an indirect effect on the independent variable. This indicates that SDM has advantages compared to SAR because there are spatial effects on the dependent and independent variables, the spatial weighted matrix used in this study is row-normalized binary contiguity. The data used in this study is sourced from the Central Java Statistics Agency (BPS) in 2019 for 35 districts and cities, which GRDP as the dependent variable, labor, human resources, and road infrastructure as independent variables. Based on the results of the analysis, the AIC value shows that SDM is significantly better than the ordinary least square (OLS) and SAR models. SDM results show that human resources have a positive sign and a direct effect of 88.5 percent and an indirect effect of 13.1 percent. In addition, the labor variable has an indirect effect on GRDP of 22.2 percent.

Downloads

Download data is not yet available.

Author Biography

Abdul Karim, Universitas Islam Negeri Walisongo, Semarang, Indonesia

SCOPUS ID: 57196185152

Web of Science ID: ABB-8594-2020

ORCID ID: 0000-0002-7204-944X

Google Scholar ID: bqs0lKAAAAAJ

SINTA ID: 6732704

 

References

N. Feriyanto, “Determinant of gross regional domestic product (GRDP) in Yogyakarta special province,” Econ. J. Emerg. Mark., vol. 6, no. 2, pp. 131–140, Oct. 2014, doi: 10.20885/ejem.vol6.iss2.art6.

M. Egerer, E. Langmantel, and M. Zimmer, “Gross Domestic Product,” in Regional Assessment of Global Change Impacts, Cham: Springer International Publishing, 2016, pp. 147–152.

R. K. Pace, J. P. LeSage, and S. Zhu, “Spatial Dependence in Regressors and its Effect on Estimator Performance,” SSRN Electron. J., 2011, DOI: 10.2139/ssrn.1801241.

A. Tientao, D. Legros, and M. C. Pichery, “Technology spillover and TFP growth: A spatial Durbin model,” Int. Econ., Apr. 2015, DOI: 10.1016/j.inteco.2015.04.004.

N. Yu, M. de Jong, S. Storm, and J. Mi, “Spatial spillover effects of transport infrastructure: evidence from Chinese regions,” J. Transp. Geogr., vol. 28, pp. 56–66, Apr. 2013, DOI: 10.1016/j.jtrangeo.2012.10.009.

P. Arbués, J. F. Baños, and M. Mayor, “The spatial productivity of transportation infrastructure,” Transp. Res. Part A Policy Pract., vol. 75, pp. 166–177, May 2015, DOI: 10.1016/j.tra.2015.03.010.

J. Li, J. Wen, and B. Jiang, “Spatial Spillover Effects of Transport Infrastructure in Chinese New Silk Road Economic Belt,” Int. J. e-Navigation Marit. Econ., vol. 6, pp. 1–8, 2017, DOI: 10.1016/j.enavi.2017.05.001.

A. Karim, D. S. Sarra, R. Wasono, T. W. Utami, and Toheri, “Spatial modeling for rice production analysis in Central Java province Indonesia,” J. Phys. Conf. Ser., vol. 1217, no. 1, p. 012113, May 2019, DOI: 10.1088/1742-6596/1217/1/012113.

R. Wasono, A. Karim, M. Y. Darsyah, and Suwardi, “Budgeting school operational assistance in Central Java using three spatial process modeling,” J. Phys. Conf. Ser., vol. 1217, no. 1, p. 012112, May 2019, DOI: 10.1088/1742-6596/1217/1/012112.

L. Anselin, “Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity,” Geogr. Anal., vol. 20, no. 1, pp. 1–17, 1988, doi: 10.1111/j.1538-4632.1988.tb00159.x.

H. de-G. Acquah, “On the Comparison of Akaike Information Criterion and Consistent Akaike Information Criterion in Selection of an Asymmetric Price Relationship: Bootstrap Simulation Results,” AGRIS on-line Pap. Econ. Informatics, vol. 5, no. 1, pp. 3–9, Mar. 2013, DOI: 1804-1930.

A. Karim, A. Faturohman, S. Suhartono, D. D. Prastyo, and B. Manfaat, “Regression Models for Spatial Data: An Example from Gross Domestic Regional Bruto in Province Central Java,” J. Ekon. Pembang. Kaji. Masal. Ekon. dan Pembang., vol. 18, no. 2, p. 213, Dec. 2017, doi: 10.23917/jep.v18i2.4660.

A. Karim, Suhartono, and D. D. Prastyo, “Spatial spillover effect of transportation infrastructure on regional growth,” Econ. Reg., vol. 16, no. 3, pp. 911–920, 2020, DOI: 10.17059/ekon.reg.2020-3-18.

J. P. LeSage and R. K. Pace, “Spatial econometric modeling of origin-destination flows,” J. Reg. Sci., vol. 48, no. 5, pp. 941–967, 2008, doi: 10.1111/j.1467-9787.2008.00573.x.

M. A. Márquez, J. Ramajo, and G. J. D. Hewings, “A Spatio-temporal econometric model of regional growth in Spain,” J. Geogr. Syst., vol. 12, no. 2, pp. 207–226, Jun. 2010, DOI: 10.1007/s10109-010-0119-3.

P. CANTOS, M. GUMBAU‐ALBERT, and J. MAUDOS, “Transport infrastructures, spillover effects, and regional growth: evidence of the Spanish case,” Transp. Rev., vol. 25, no. 1, pp. 25–50, Jan. 2005, DOI: 10.1080/014416410001676852.

Downloads

Published

2021-10-31

How to Cite

Karim, A. (2021). Regional Economic Growth: A Spatial Durbin Model Approach. Jurnal Matematika MANTIK, 7(2), 147–154. https://doi.org/10.15642/mantik.2021.7.2.147-154