Optimization of Stock Portfolios Using Goal Programming Based on the Kalman-Filter Method

  • Fauziyah Universitas PGRI Adi Buana Surabaya, Surabaya, Indonesia
  • Evita Purnaningrum Universitas PGRI Adi Buana Surabaya, Surabaya, Indonesia
Keywords: Stock Price, Portfolio, Goal Programming, Kalman filter, Estimation

Abstract

Long-term stock investment development is carried out by means of portfolio optimization. Selection of stocks for portfolios is not only based on high-value stock prices but also takes into account their fluctuations. Estimation of future stock price fluctuations has an indirect impact on future portfolio formation. This research has implemented the Kalman filter method to obtain the best estimation results from various stock prices with a high degree of accuracy. The results are then used to form a stock portfolio on the basis of Goal Programming. This study has compared the optimization results with the real value of stock prices. The results obtained, Kalman filter-based Goal Programming is more effective for predicting future portfolios compared to the Goal Programming method with a return difference of Rp. 178,039,848. This suggests that optimization with the Kalman Filter-based Objective Programming can be used as a tool to determine future stock portfolios.

Downloads

Download data is not yet available.

Author Biography

Evita Purnaningrum, Universitas PGRI Adi Buana Surabaya, Surabaya, Indonesia

 

 

References

A. Mansory, N. Ebrahimi, and M. Ramazani, “Ranking of companies considering TOPSIS-DEA approach methods (Evidence from Cement industry in Tehran stock exchange),” Pakistan J. Stat. Oper. Res., 2014.

F. Iqbal, “Risk forecasting of Karachi Stock Exchange: A comparison of classical and Bayesian GARCH models,” Pakistan J. Stat. Oper. Res., 2016.

A. A. Salisu and U. B. Ndako, “Modelling stock price–exchange rate nexus in OECD countries: A new perspective,” Econ. Model., 2018.

R. Kruse, H. Kaufmann, and C. Wegener, “Bias-corrected estimation for speculative bubbles in stock prices,” Econ. Model., 2018.

G. A. Z. Gourène, P. Mendy, and G. M. N’gbo Ake, “Multiple time-scales analysis of global stock markets spillovers effects in African stock markets,” Int. Econ., 2019.

T. Ikeda, “Multifractal structures for the Russian stock market,” Phys. A Stat. Mech. its Appl., 2018.

A. Oztekin, R. Kizilaslan, S. Freund, and A. Iseri, “A data analytic approach to forecasting daily stock returns in an emerging market,” Eur. J. Oper. Res., 2016.

M. Zolfaghari and B. Sahabi, “Impact of foreign exchange rate on oil companies risk in stock market: A Markov-switching approach,” J. Comput. Appl. Math., 2017.

M. Aksaraylı and O. Pala, “A polynomial goal programming model for portfolio optimization based on entropy and higher moments,” Expert Syst. Appl., 2018.

E. Purnaningrum and V. Ariyanti, “Pemanfaatan Google Trends Untuk Mengetahui Intervensi Pandemi Covid-19 Terhadap Pasar Saham Di Indonesia,” Jurnal.Unipasby.Ac.Id, 2020.

E. Purnaningrum, “Pendekatan Metode Kalman Filter untuk Peramalan Pergerakan Indeks Harga Saham Terdampak Pandemi Coronavirus,” Maj. Ekon., vol. 25, no. 2, pp. 103–109, 2020.

H. Markowitz, “Portfolio Selection Harry Markowitz,” J. Finance, 1952.

K. R. Harrison et al., “Portfolio Optimization for Defence Applications,” IEEE Access, 2020.

C. Chen and Y. Wei, “Robust multiobjective portfolio optimization: a set order relations approach,” J. Comb. Optim., 2019.

K. Kaczmarek, L. Dymova, and P. Sevastjanov, “A simple view on the interval and fuzzy portfolio selection problems,” Entropy, 2020.

Y. Zhang, P. Zhao, Q. Wu, B. Li, J. Huang, and M. Tan, “Cost-sensitive portfolio selection via deep reinforcement learning,” arXiv. 2020.

V. Mohagheghi, S. M. Mousavi, J. Antuchevičienė, and M. Mojtahedi, “Project portfolio selection problems: A review of models, uncertainty approaches, solution techniques, and case studies,” Technological and Economic Development of Economy. 2019.

M. Rahiminezhad Galankashi, F. Mokhatab Rafiei, and M. Ghezelbash, “Portfolio selection: a fuzzy-ANP approach,” Financ. Innov., 2020.

N. Kouaissah and A. Hocine, “Optimizing sustainable and renewable energy portfolios using a fuzzy interval goal programming approach,” Comput. Ind. Eng., 2020.

P. Gupta, M. K. Mehlawat, S. Yadav, and A. Kumar, “A polynomial goal programming approach for intuitionistic fuzzy portfolio optimization using entropy and higher moments,” Appl. Soft Comput. J., 2019.

N. Bagheri, “Deterministic goal programming approach for Islamic portfolio selection,” Oper. Res., 2019.

M. De, B. K. Mangaraj, and K. B. Das, “A fuzzy goal programming model in portfolio selection under competitive-cum-compensatory decision strategies,” Appl. Soft Comput. J., 2018.

S. Y. Wang, W. M. Chen, and Y. Liu, “Collaborative Product Portfolio Design Based on the Approach of Multichoice Goal Programming,” Math. Probl. Eng., 2021.

E. Purnaningrum, “Renewable Stock Price Model Sebagai Pendukung Investasi Saham : Studi Kasus Saham JII,” KOLEGIAL, vol. 6, no. 2, pp. 97–110, 2018.

Fauziyah, “Penerapan Metode Goal Programming Dalam Berinvestasi Untuk Mendapatkan Portofolio Yang Optimal Pada Pasar Saham (Studi Kasus : Indeks Saham JII),” Pros. Konf. Nas. Mat. XIX-2018, 2018.

R. Posts, “Daftar Saham Indeks JII,” no. November, pp. 5–7, 2018.

W. Farida Agustini, I. R. Affianti, and E. R. M. Putri, “Stock price prediction using geometric Brownian motion,” J. Phys. Conf. Ser., vol. 974, no. 1, 2018.

E. Purnaningrum, S. Cahyaningtias, and D. A. Kusumawardhani, “Augmentation time series model with Kalman filter to predict foreign tourist arrivals in East Java,” J. Phys. Conf. Ser., vol. 1869, no. 1, p. 012116, Apr. 2021.

J. Gudmundsson, “A model of stock price movements,” no. May, 2016.

R. Paramitasari and M. Mulyono, “Analisis Portofolio Untuk Menentukan Expected Return Optimal dan Risiko Minimal pada Saham Perusahaan Telekomunikasi yang Terdaftar di Bursa Efek Indonesia,” J. Manaj. dan Organ., vol. 6, no. 1, p. 19, 2016.

E. Purnaningrum and M. Athoillah, “SVM Approach for Forecasting International Tourism Arrival In East Java,” J. Phys. Conf. Ser., vol. 1863, no. 1, p. 012060, Mar. 2021.

E. Purnaningrum and I. Ariqoh, “Google Trends Analytics dalam Bidang Pariwisata,” Maj. Ekon., 2019.

H. K. Nafah and E. Purnaningrum, “Penggunaan Big Data Melalui Analisis Google Trends Untuk Mengetahui Perspektif Pariwisata Indonesia di Mata Dunia,” SNHRP, vol. 3, pp. 430–436, 2021.

CROSSMARK
Published
2021-05-31
DIMENSIONS
How to Cite
Fauziyah, & PurnaningrumE. (2021). Optimization of Stock Portfolios Using Goal Programming Based on the Kalman-Filter Method. Jurnal Matematika MANTIK, 7(1), 20-30. https://doi.org/10.15642/mantik.2021.7.1.20-30