Identification of 1-Aminocyclopropane-1-Carboxilid Acid (ACC)-Deaminase Producing Endophytic Bacteria from Local Agricultural Plantation Based on 16S Ribosomal RNA Gene as Genetic Marker

Authors

  • Rumella Simarmata Indonesian Institute of Science
  • Ngadiman Ngadiman Universitas Gadjah Mada Yogyakarta
  • Muhammad Saifur Rohman Indonesian Institute of Science
  • Partomuan Simanjuntak Universitas Pancasila

DOI:

https://doi.org/10.29080/biotropic.2019.3.1.13-23

Keywords:

Endophytic bacteria, ACC deaminase, 16S rRNA gene, α-ketobutyrate

Abstract

The objective of this work was to isolate and identify of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing endophytic bacteria from root of local agricultural plantation by using 16S rRNA gene as genetic marker. Twelve root samples were collected from local agricultural plantation in Java area.  After surface sterilization, each root sample was inoculated in nutrient agar media and the grown colonies were further purified and tested for the ability to grow in N-free minimal medium containing AIB as a sole of nitrogen source. The selected colonies were further tested for their ACC deaminase activity by measuring the rate of conversion of ACC into α-ketobutyrate. From this work, 12 bacterial strains that exhibited the ACC deaminase activity by 123.75 to 1461.44 nmol α-ketobutyrate/mg/hour were successfully isolated. Based on the 16SrRNA gene sequences, those bacterial isolates were identified as Sphingobacterium multivorum BK1, Bacillus mycoides CB2, Pantoea dispersa CK4, Pantoea agglomerans KD6.2, Enterobacter ludwigii KW3, Bacillus aryabhattai TW7, Pseudomonas monteilii KS12, Pseudomonas plecoglossicida KS16.2, Pseudomonas putida PIR3C, Stenotrophomonas maltophilia PIR5, Lysinibacillus pakistanensis PIC5, and Raoultella terrigena PCM8.  Pseudomonas putida PIR3C and Pseudomonas monteilii KS12 showed promising ACC deaminase activity and therefore it could be as a good candidate for further application in plant growth promoting in stress conditions.

Downloads

Download data is not yet available.

References

Belimov, A. A., Safronova, V. I., Sergeyeva, T. A., Egorova, T. N., Matveyeva, V. A., Tsyganov, V. E., Borisov, A. Y., Tikhonovich, I. A., Kluge, C., Preisfeld, A., Dietz, K. J., & Stepanok, V. V. (2001). Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Canadian Journal of Microbiology, 47(7), 642-652.

Bleecker, A. B., & Kende, H. (2000). Ethylene: a gaseous signal molecule in plants. Annual review of cell and developmental biology, 16(1), 1-18. https://doi.org/10.1146/annurev.cellbio.16.1.1

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.

Ding, T., & Melcher, U. (2016). Influences of plant species, season and location on leaf endophytic bacterial communities of non-cultivated plants. PloS one, 11(3), e0150895. https://doi.org/10.1371/journal.pone.0150895

Dworkin, M., & Foster, J. W. (1958). Experiments with some microorganisms which utilize ethane and hydrogen. Journal of bacteriology, 75(5), 592-601

Fisher, P. J., & Petrini, O. (1992). Fungal saprobes and pathogens as endophytes of rice (Oryza sativa L.). New Phytologist, 120(1), 137-143. https://doi.org/10.1111/j.1469-8137.1992.tb01066.x

Glick, B. R. (2005). Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS microbiology letters, 251(1), 1-7. https://doi.org/10.1016/j.femsle.2005.07.030

Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological research, 169(1), 30-39. https://doi.org/10.1016/j.micres.2013.09.009

Grichko, V. P., & Glick, B. R. (2001). Amelioration of flooding stress by ACC deaminase-containingplant growth-promoting bacteria. Plant Physiology and Biochemistry, 39(1), 11-17. https://doi.org/10.1139/cjm-46-12-1159

Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F., & Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43(10), 895-914. https://doi.org/10.1139/m97-131

Honma, M., & Shimomura, T. (1978). Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agricultural and Biological Chemistry, 42(10), 1825-1831. https://doi.org/10.1080/00021369.1978.10863261

Klee, H. J., Hayford, M. B., Kretzmer, K. A., Barry, G. F., & Kishore, G. M. (1991). Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. The Plant Cell, 3(11), 1187-1193. https://doi.org/10.1105/tpc.3.11.1187

Kozyrovska, N. O. (2013). Crosstalk between endophytes and a plant host within information-processing networks. Biopolymers and cell, (29, no.3), 234-243. http://dx.doi.org/10.7124/bc.00081D

Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution, 33(7), 1870-1874. https://doi.org/10.1093/molbev/msw054

Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Science, 166(2), 525-530. https://doi.org/10.1016/j.plantsci.2003.10.025

Moore, J. E., Barton, M. D., Blair, I. S., Corcoran, D., Dooley, J. S., Fanning, S., Kempf, I., Lastovica, A. J., Lowery, C. J., Matsuda, M., McDowell, D. A., McMahon, A., Millar, B. C., Rao, J. R., Rooney, P. J., Seal, B. S., Snelling, W. J., & Tolba, O. (2006). The epidemiology of antibiotic resistance in Campylobacter. Microbes and infection, 8(7), 1955-1966. https://doi.org/10.1016/j.micinf.2005.12.030

Penrose, D. M., & Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase‐containing plant growth‐promoting rhizobacteria. Physiologia plantarum, 118(1), 10-15. https://doi.org/ 10.1034/j.1399-3054.2003.00086.x

Reed, M. L., & Glick, B. R. (2005). Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Canadian Journal of Microbiology, 51(12), 1061-1069. https://doi.org/10.1139/w05-094

Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J., & Dowling, D. N. (2008). Bacterial endophytes: recent developments and applications. FEMS microbiology letters, 278(1), 1-9. https://doi.org/10.1111/j.1574-6968.2007.00918.x

Taghavi, S., Van Der Lelie, D., Hoffman, A., Zhang, Y. B., Walla, M. D., Vangronsveld, J., Newman, L., & Monchy, S. (2010). Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS genetics, 6(5),e1000943. https://doi.org/10.1371/journal.pgen.1000943

Yao, M., Ose, T., Sugimoto, H., Horiuchi, A., Nakagawa, A., Wakatsuki, S., Yokoi, D., Murakami, T., Honma, M. & Tanaka, I. (2000). Crystal structure of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. Journal of Biological Chemistry, 275(44), 34557- 34565. https://doi.org/10.1074/jbc.M004681200

Downloads

Published

2019-02-28

How to Cite

Simarmata, R., Ngadiman, N., Rohman, M. S. and Simanjuntak, P. (2019) “Identification of 1-Aminocyclopropane-1-Carboxilid Acid (ACC)-Deaminase Producing Endophytic Bacteria from Local Agricultural Plantation Based on 16S Ribosomal RNA Gene as Genetic Marker”, Biotropic : The Journal of Tropical Biology, 3(1), pp. 13–23. doi: 10.29080/biotropic.2019.3.1.13-23.