Klasifikasi Multi Output pada Harga Smartphone Menggunakan Learning Vector Quantization (LVQ) dan Backpropagation (BP)

  • Dinita Rahmalia Universitas Islam Darul Ulum Lamongan
  • Mohammad Syaiful Pradana Universitas Islam Darul Ulum Lamongan
  • Teguh Herlambang Universitas Nahdlatul Ulama Surabaya
Keywords: Classification, Neural Network, Learning Vector Quantization, Backpropagation, Pattern Recognition

Abstract

There are many smartphones with various price sold in market. The price of smartphone is affected by some components such as weight, internal storage, memory (RAM), rear camera, front camera and brands. There are two methods for classifying price class of smartphone in market such as Learning Vector Quantization (LVQ) and Backpropagation (BP). From classifying price class of smartphone in market using LVQ and BP, there are the differences on the both of them. LVQ classifies price range of smartphone by euclidean distance of weight and data on its iteration. BP classifies price range of smartphone by gradient descent of target and output on its iteration. In multi output classification, one object may have multi output. Based on simulation results, BP gives the better accuracy and error rate in training data and testing data than LVQ.

 

Downloads

Download data is not yet available.

References

L. Fausett, Fundamental of Neural Networks, Prentice Hall, New York, 1994

J. Han, M. Kamber, J. Pei, Data Mining Concepts and Techniques, Elsevier, New York, 2012

D. Rahmalia, T. Herlambang, “Prediksi Cuaca Menggunakan Algoritma Particle Swarm Optimization-Neural Network (PSONN)” In Prosiding Seminar Nasional Matematika dan Aplikasinya, pp. 41-48, 2017

D. Rahmalia, T. Herlambang, “Application Kohonen Network and Fuzzy C Means for Clustering Airports Based on Frequency of Flight,” Kinetik : Game Technology, Information System, Computer Network, Computing ; vol. 3, no. 3, pp. 229-236. 2018.

A. Muhith, T. Herlambang, Irhamah, D. Rahmalia, “Estimation of Thrombocyte Concentrate (TC) and Whole Blood (WB) Using Unscented Kalman Filter,” International Journal of Advanced Science and Technology ; vol. 9, no. 8. 2020.

D. Rahmalia, N. Aini, “Pengaruh Korelasi Data pada Peramalan Suhu Udara Menggunakan Backpropagation Neural Network,” Zeta Math Journal ; vol. 4, no. 1, pp.1-6. 2018.

D. Rahmalia, M.S. Pradana, “Backpropagation Neural Network pada Data yang Tak Stationer,” Jurnal Riset dan Aplikasi Matematika (JRAM) ; vol. 3, no. 1, pp. 32-42. 2019.

A. Rohmatullah, D. Rahmalia, M.S. Pradana, “Klasterisasi Data Pertanian di Kabupaten Lamongan Menggunakan Algoritma K-Means dan Fuzzy C Means,” Jurnal Ilmiah Teknosains ; vol. 5, no. 2, pp. 86-93. 2020.

D. Rahmalia, A. Rohmatullah, “Pengaruh Korelasi Data pada Peramalan Kelembaban Udara Menggunakan Adaptive Neuro Fuzzy Inference System (ANFIS),” Applied Technology and Computing Science Journal ; vol. 2, no. 1, pp. 10-24. 2019.

D.F. Karya, P. Katias, T. Herlambang, D. Rahmalia, “Development of Unscented Kalman Filter Algorithm for Stock Price Estimation” In Journal of Physics : Conference Series, 2019

D. Rahmalia et al, “Comparison Between Neural Network (NN) and Adaptive Neuro Fuzzy Inference System (ANFIS) on Sunlight Intensity Prediction Based on Air Temperature and Humidity” In Journal of Physics : Conference Series, 2019

CROSSMARK
Published
2021-01-27
DIMENSIONS
How to Cite
RahmaliaD., PradanaM. S., & HerlambangT. (2021). Klasifikasi Multi Output pada Harga Smartphone Menggunakan Learning Vector Quantization (LVQ) dan Backpropagation (BP). Systemic: Information System and Informatics Journal, 6(2), 14-19. https://doi.org/10.29080/systemic.v6i2.967
Section
Articles