Implementasi Perbandingan Algoritma Apriori Dan FP-Growth Untuk Mengetahui Pola Pembelian Konsumen Pada Produk Panel Di PT Surya Multi Perkasa Movinko

  • Diego Armando Pratama Putra Universitas Narotama, Surabaya
  • Tresna Maulana Fahrudin Universitas Narotama, Surabaya
  • Natalia Damastuti Universitas Narotama, Surabaya
Keywords: Purchase Pattern, Consumer, Product Panel, Apriori, FPGrowth

Abstract

Some companies have not used much consumer purchase transaction data as one of their sales strategies, this transaction data contains what items are often bought by consumers in one purchase transaction at a different time and structure. If the transaction data is analyzed and explored in more depth, the company will gain insight into consumer purchase patterns analysis and be profitable for the company. In this research, an analysis of consumer purchase transaction data was carried out using Apriori algorithm and FP-Growth, both of which are association rule method group that aims to determine consumer purchasing patterns. The data used in this study were obtained from panel product purchase transaction data at PT Surya Multi Perkasa Movinko. The transaction data consist of 23 types of product items and 492 transactions. The experimental results of this study showed that the best performance of Apriori algorithm with a support factor of 0.0054 and a confidence factor of 0.30 generating 12 association rules, while the best performance of FP-Growth algorithm with a supporting factor of 2 and a confidence factor of 0.7 generating 9 association rules.

Downloads

Download data is not yet available.

References

J. L. Putra, M. Raharjo, T. A. A. Sandi, R. Ridwan, and R. Prasetyo, “Implementasi Algoritma Apriori Terhadap Data Penjualan Pada Perusahaan Retail,” J. Pilar Nusa Mandiri, vol. 15, no. 1, pp. 85–90, 2019, doi: 10.33480/pilar.v15i1.113.

H. Santoso, I. P. Hariyadi, and Prayitno, “Data Mining Analisa Pola Pembelian Produk,” Tek. Inform., no. 1, pp. 19–24, 2016, [Online]. Available: http://ojs.amikom.ac.id/index.php/semnastekn omedia/article/download/1267/1200.

K. Dan et al., “ALGORITMA APRIORI DAN FP-GROWTH UNTUK ANALISA PERBANDINGAN DATA PENJUALAN LEPTOP BERDASARKAN MERK YANG DIMINATI KONSUMEN (STUDI KASUS : INDOCOMPUTER PAYAKUMBUH),” J. Sist. Inf. Dan Manaj. Inform., vol. 6, no. 2, pp. 201–207, 2019.

K. N. Angraini, Indwiarti, and F. Nhita, “Implementasi Algoritma Fuzzy c-Covering untuk Mengetahui Pola Pembelian pada Data Transaksi Swalayan,” vol. 5, no. 3, pp. 8198– 8205, 2018.

J. Eska, “Penerapan Data Mining Untuk Prekdiksi Penjualan Wallpaper Menggunakan Algoritma C4.5 STMIK Royal Ksiaran,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 2, pp. 9–13, 2016.

A. Maulana and A. A. Fajrin, “Penerapan Data Mining Untuk Analisis Pola Pembelian Konsumen Dengan Algoritma Fp-Growth Pada Data Transaksi Penjualan Spare Part Motor,” Klik - Kumpul. J. Ilmu Komput., vol. 5, no. 1, p. 27, 2018, doi: 10.20527/klik.v5i1.100.

N. A. Hasibuan et al., “Implementasi Data Mining Untuk Pengaturan Layout,” vol. 4, no. 4, pp. 6–11, 2017.

W. Aprianti, K. A. Hafizd, and M. R. Rizani, “Implementasi Association Rules dengan Algoritma Apriori pada Dataset Kemiskinan,” Limits J. Math. Its Appl., vol. 14, no. 2, p. 57, 2017, doi: 10.12962/limits.v14i2.2933.

Dio Prima Mulya, “Analisa Dan Implementasi Association Rule Dengan Algoritma Fp-Growth Dalam Seleksi Pembelian Tanah Liat,” Teknol. dan Sist. Inf. Bisnis, vol. 1, no. 1, pp. 47–57, 2019.

A. Setiawan and I. G. Anugrah, “Penentuan Pola Pembelian Konsumen pada Indomaret GKB Gresik dengan Metode FP-Growth,” J. Nas. Komputasi dan Teknol. Inf., vol. 2, no. 2, p. 115, 2019, doi: 10.32672/jnkti.v2i2.1564.

T. M. Fahrudin, I. Syarif, and A. R. Barakbah, “Discovering patterns of NEDbreast cancer based on association rules using apriori and FP-growth,” Int. Electron. Symp. Knowl. Creat. Intell. Comput., pp. 132–139, 2017, doi: 10.1109/KCIC.2017.8228576.

N. Rahmawati, Y. N. Nasution, and F. D. T. Amijaya, “Aplikasi Data Mining Market Basket Analysis untuk Menemukan Pola Pembelian di Toko Metro Utama Balikpapan,” J. EKSPONENSIAL, vol. 8, no. 1, pp. 1–8, 2017, [Online]. Available: http://jurnal.fmipa.unmul.ac.id/index.php/exp onensial/article/view/69.

M. Badrul, “Algoritma Asosiasi Dengan Algoritma Apriori Untuk Analisa Data Penjualan,” None, vol. 12, no. 2, pp. 121– 129, 2016.

E. T. L. Christin Nandari Dengen, Kusrini, “Penentuan Association Rule Pada Kelulusan Mahasiswa Menggunakan Algoritma Apriori,” Jurti, vol. 3, no. 1, pp. 20–29, 2019.

A. Ikhwan, “A Novelty of Data Mining for FP-Growth Algorithm,” Int. J. Civ. Eng. Technol., vol. 9, no. 7, pp. 1660–1669, 2018.

I. P. Astuti, “Algoritma Apriori Untuk Menemukan Hubungan Antara Jurusan Sekolah Dengan Tingkat Kelulusan Mahasiswa,” J. Tek. Inform., vol. 12, no. 1, pp. 69–78, 2019, doi: 10.15408/jti.v12i1.10525.

R. Fitria, W. Nengsih, and D. H. Qudsi, “Implementasi Algoritma FP-Growth Dalam Penentuan Pola Hubungan Kecelakaan Lalu Lintas,” J. Sist. Inf., vol. 13, no. 2, p. 118, 2017, doi: 10.21609/jsi.v13i2.551.

CROSSMARK
Published
2021-01-27
DIMENSIONS
How to Cite
Pratama PutraD. A., FahrudinT. M., & DamastutiN. (2021). Implementasi Perbandingan Algoritma Apriori Dan FP-Growth Untuk Mengetahui Pola Pembelian Konsumen Pada Produk Panel Di PT Surya Multi Perkasa Movinko. Systemic: Information System and Informatics Journal, 6(2), 8-13. https://doi.org/10.29080/systemic.v6i2.963
Section
Articles